关键词: Panonychus citri carboxyl/cholinesterases metabolic resistance spirodiclofen

Mesh : Animals Spiro Compounds / pharmacology metabolism chemistry Arthropod Proteins / genetics metabolism chemistry Drug Resistance / genetics Carboxylesterase / genetics metabolism 4-Butyrolactone / analogs & derivatives metabolism pharmacology

来  源:   DOI:10.1021/acs.jafc.4c04094

Abstract:
Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.
摘要:
据报道,羧基/胆碱酯酶(CCE)基因的过表达与节肢动物中许多农药抗性病例有关。然而,很少有文献记载CCE基因参与柑橘全甲的螺氯芬抗性。在以前的研究中,我们发现,氟氯芬抗性与P450和CCE酶活性增加有关。在这项研究中,我们确定了两个CCE基因,PcCCE3和PcCCE5,在抗螺氯芬菌株和暴露于螺氯芬后显著上调。PcCCE3和PcCCE5的RNA干扰增加了螺旋藻的敏感性。体外代谢表明,PcCCE3和PcCCE5可以与螺氯芬相互作用,但代谢物仅在PcCCE3治疗中检测到。我们的结果表明,PcCCE3通过直接代谢参与螺氯芬抗性,PcCCE5可能通过被动结合和隔离参与螺氯芬抗性,这提供了新的见解氟氯芬在香茅中的抗性。
公众号