关键词: Power ultrasonic Shock wave Thin liquid layers Ultrasonic cavitation

来  源:   DOI:10.1038/s41598-024-68128-w   PDF(Pubmed)

Abstract:
In the field of power ultrasonic vibration processing, the thin liquid layer nestled between the tool head and the material serves as a hotbed for cavitation shock wave emissions that significantly affect the material\'s surface. The precise manipulation of these emissions presents a formidable challenge, stemming from a historical deficit in the quantitative analysis of both the ultrasonic enhancement effect and the shock wave intensity within this niche environment. Our study addresses this gap by innovatively modifying the Gilmore-Akulichev equation, laying the groundwork for a sophisticated bubble dynamics model and a pioneering shock wave propagation model tailored to the thin liquid layer domain. Firstly, our study investigated the ultrasound enhancement effect under various parameters of thin liquid layers, revealing an amplification of ultrasound pressure in the thin liquid layer area by up to 7.47 times. The mathematical model was solved using the sixth-order Runge-Kutta method to examine shock wave velocity and pressure under different conditions. our study identified that geometric parameters of the tool head, thin liquid layer thickness, ultrasonic frequency, and initial bubble radius all significantly influenced shock wave emission. At an ultrasonic frequency of 60 kHz, the shock wave pressure at the measurement point exhibited a brief decrease from 182.6 to 179.5 MPa during an increase. Furthermore, rapid attenuation of the shock wave was found within the range of R0-3R0 from the bubble wall. This research model aims to enhance power ultrasonic vibration processing technology, and provide theoretical support for applications in related fields.
摘要:
在功率超声振动加工领域,位于工具头和材料之间的薄液体层作为气蚀激波发射的温床,显著影响材料的表面。对这些排放的精确操纵提出了巨大的挑战,源于对该生态位环境中的超声增强效应和冲击波强度的定量分析的历史缺陷。我们的研究通过创新性地修改Gilmore-Akulichev方程来解决这一差距,为复杂的气泡动力学模型和针对薄液层域量身定制的开创性冲击波传播模型奠定了基础。首先,我们的研究调查了薄液体层的各种参数下的超声增强效果,揭示了超声压力在薄液层区域的放大高达7.47倍。使用六阶龙格-库塔方法求解数学模型,以检查不同条件下的冲击波速度和压力。我们的研究确定了工具头的几何参数,薄液体层厚度,超声波频率,和初始气泡半径均显着影响冲击波发射。在60kHz的超声波频率下,在增加过程中,测量点的冲击波压力从182.6MPa短暂下降到179.5MPa。此外,在气泡壁的R0-3R0范围内发现了冲击波的快速衰减。本研究模型旨在提高功率超声振动处理技术,为相关领域的应用提供理论支持。
公众号