关键词: antibacterial bone regeneration composite scaffold melt electrowriting osteogenic solution electrospinning

Mesh : Anti-Bacterial Agents / pharmacology chemistry Tissue Engineering Animals Tissue Scaffolds / chemistry Osteogenesis / drug effects Rats Durapatite / chemistry pharmacology Bone Regeneration / drug effects Rats, Sprague-Dawley Roxithromycin / chemistry pharmacology Nanofibers / chemistry Staphylococcus aureus / drug effects Bone and Bones / drug effects Cell Proliferation / drug effects Mice

来  源:   DOI:10.1021/acsami.4c07400

Abstract:
The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.
摘要:
与单个纳米或微米尺寸的支架相比,微纳米复合材料支架的利用已被广泛证明在骨修复中具有优越的优势。然而,这些复合支架内的生物活性的增强仍然具有挑战性。在这项研究中,我们提出了一种新的方法来结合熔融电写(MEW)和溶液静电纺丝(SES)技术,以制造包含羟基磷灰石(HAP)的复合支架,成骨成分,和罗红霉素(ROX),抗菌活性成分。扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)证实了支架内纳米纤维-微网格的分层结构,以及成功加载HAP和ROX。HAP的掺入提高了复合支架的吸水能力,从而促进细胞粘附和增殖,以及成骨分化。此外,ROX产生有效的抗菌能力而没有任何可观察到的细胞毒性。最后,将支架应用于大鼠颅骨缺损模型,结果表明,20%HAP组表现出优越的新骨形成,未引起不良反应。因此,我们的发现为设计和制造用于骨再生的生物活性支架提供了有希望的策略。
公众号