关键词: cheaters evolutionarily stable strategy evolutionary game theory lattice models public goods spatial structure

来  源:   DOI:10.1002/ece3.11548   PDF(Pubmed)

Abstract:
Plants emit biogenic volatile organic compounds (BVOCs) as signaling molecules, playing a crucial role in inducing resistance against herbivores. Neighboring plants that eavesdrop on BVOC signals can also increase defenses against herbivores or alter growth patterns to respond to potential risks of herbivore damage. Despite the significance of BVOC emissions, the evolutionary rationales behind their release and the factors contributing to the diversity in such emissions remain poorly understood. To unravel the conditions for the evolution of BVOC emission, we developed a spatially explicit model that formalizes the evolutionary dynamics of BVOC emission and non-emission strategies. Our model considered two effects of BVOC signaling that impact the fitness of plants: intra-individual communication, which mitigates herbivore damage through the plant\'s own BVOC signaling incurring emission costs, and inter-individual communication, which alters the influence of herbivory based on BVOC signals from other individuals without incurring emission costs. Employing two mathematical models-the lattice model and the random distribution model-we investigated how intra-individual communication, inter-individual communication, and spatial structure influenced the evolution of BVOC emission strategies. Our analysis revealed that the increase in intra-individual communication promotes the evolution of the BVOC emission strategy. In contrast, the increase in inter-individual communication effect favors cheaters who benefit from the BVOCs released from neighboring plants without bearing the costs associated with BVOC emission. Our analysis also demonstrated that the narrower the spatial scale of BVOC signaling, the higher the likelihood of BVOC evolution. This research sheds light on the intricate dynamics governing the evolution of BVOC emissions and their implications for plant-plant communication.
摘要:
植物释放生物挥发性有机化合物(BVOCs)作为信号分子,在诱导对食草动物的抗性中起着至关重要的作用。窃听BVOC信号的邻近植物也可以增加对草食动物的防御或改变生长模式,以应对草食动物损害的潜在风险。尽管BVOC排放的重要性,它们释放背后的进化原理以及导致此类排放多样性的因素仍然知之甚少。为了解开BVOC排放演变的条件,我们开发了一个空间显式模型,形式化了BVOC排放和非排放策略的演化动力学。我们的模型考虑了影响植物适应度的BVOC信号的两个效应:个体内沟通,通过工厂自己的BVOC信号产生排放成本来减轻草食动物的损害,和个体间的交流,这改变了基于来自其他个体的BVOC信号的食草动物的影响,而不会产生排放成本。采用两个数学模型-晶格模型和随机分布模型-我们研究了个体内部沟通,个体间的交流,空间结构影响了BVOC排放策略的演变。我们的分析表明,个体内部交流的增加促进了BVOC排放策略的发展。相比之下,个体间交流效应的增加有利于骗子从邻近工厂释放的BVOCs中受益,而不承担与BVOC排放相关的成本。我们的分析还表明,BVOC信号的空间尺度越窄,BVOC演化的可能性越高。这项研究揭示了控制BVOC排放演变的复杂动力学及其对植物与植物交流的影响。
公众号