关键词: cryogenic temperatures quantum electronics radio frequency reflectometry silicon nanotransistor thermometry

来  源:   DOI:10.1021/acs.nanolett.4c01424

Abstract:
Cryogenic temperatures are crucial for the operation of semiconductor quantum electronic devices, yet the heating effects induced by microwave or laser signals used for quantum state manipulation can lead to significant temperature variations at the nanoscale. Therefore, probing the temperature of individual devices in working conditions and understanding the thermodynamics are paramount for designing and operating large-scale quantum computing systems. In this study, we demonstrate high-sensitivity fast thermometry in a silicon nanotransistor at cryogenic temperatures using RF reflectometry. Through this method, we explore the thermodynamic processes of the nanotransistor during and after a laser pulse and determine the dominant heat dissipation channels in the few-kelvin temperature range. These insights are important to understand thermal budgets in quantum circuits, with our techniques being compatible with microwave and laser radiation, offering a versatile approach for studying other quantum electronic devices in working conditions.
摘要:
低温温度对于半导体量子电子器件的运行至关重要,然而,用于量子态操纵的微波或激光信号引起的热效应可能导致纳米级的显著温度变化。因此,探测单个设备在工作条件下的温度和理解热力学对于设计和操作大规模量子计算系统至关重要。在这项研究中,我们演示了使用RF反射法在低温下在硅纳米晶体管中进行高灵敏度快速测温。通过这种方法,我们探索了纳米晶体管在激光脉冲期间和之后的热力学过程,并确定了在几开尔文温度范围内的主要散热通道。这些见解对于理解量子电路中的热预算很重要,我们的技术与微波和激光辐射兼容,提供了一种在工作条件下研究其他量子电子器件的通用方法。
公众号