关键词: native mass spectrometry (nMS) protein structure protein-protein interaction review ultraviolet photodissociation (UVPD)

Mesh : Ultraviolet Rays Proteins / chemistry Mass Spectrometry / methods Protein Conformation

来  源:   DOI:10.3724/SP.J.1123.2024.01021   PDF(Pubmed)

Abstract:
Dynamic changes in the structures and interactions of proteins are closely correlated with their biological functions. However, the precise detection and analysis of these molecules are challenging. Native mass spectrometry (nMS) introduces proteins or protein complexes into the gas phase by electrospray ionization, and then performs MS analysis under near-physiological conditions that preserve the folded state of proteins and their complexes in solution. nMS can provide information on stoichiometry, assembly, and dissociation constants by directly determining the relative molecular masses of protein complexes through high-resolution MS. It can also integrate various MS dissociation technologies, such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD), to analyze the conformational changes, binding interfaces, and active sites of protein complexes, thereby revealing the relationship between their interactions and biological functions. UVPD, especially 193 nm excimer laser UVPD, is a rapidly evolving MS dissociation method that can directly dissociate the covalent bonds of protein backbones with a single pulse. It can generate different types of fragment ions, while preserving noncovalent interactions such as hydrogen bonds within these ions, thereby enabling the MS analysis of protein structures with single-amino-acid-site resolution. This review outlines the applications and recent progress of nMS and UVPD in protein dynamic structure and interaction analyses. It covers the nMS techniques used to analyze protein-small-molecule ligand interactions, the structures of membrane proteins and their complexes, and protein-protein interactions. The discussion on UVPD includes the analysis of gas-phase protein structures and interactions, as well as alterations in protein dynamic structures, and interactions resulting from mutations and ligand binding. Finally, this review describes the future development prospects for protein analysis by nMS and new-generation advanced extreme UV light sources with higher brightness and shorter pulses.
摘要:
蛋白质结构和相互作用的动态变化与其生物学功能密切相关。然而,这些分子的精确检测和分析具有挑战性。天然质谱(nMS)通过电喷雾电离将蛋白质或蛋白质复合物引入气相,然后在保持溶液中蛋白质及其复合物折叠状态的近生理条件下进行MS分析。NMS可以提供有关化学计量的信息,装配,和解离常数通过高分辨率MS直接确定蛋白质复合物的相对分子质量。它还可以集成各种MS解离技术,如碰撞诱导解离(CID),表面诱导解离(SID),和紫外光解离(UVPD),为了分析构象变化,绑定接口,和蛋白质复合物的活性位点,从而揭示了它们之间的相互作用和生物学功能之间的关系。UVPD,特别是193nm准分子激光UVPD,是一种快速发展的MS解离方法,可以用单脉冲直接解离蛋白质主链的共价键。它可以产生不同类型的碎片离子,同时保留这些离子中的氢键等非共价相互作用,从而能够以单氨基酸位点分辨率对蛋白质结构进行MS分析。本文综述了nMS和UVPD在蛋白质动态结构和相互作用分析中的应用和最新进展。它涵盖了用于分析蛋白质-小分子配体相互作用的nMS技术,膜蛋白及其复合物的结构,和蛋白质-蛋白质相互作用。关于UVPD的讨论包括气相蛋白质结构和相互作用的分析,以及蛋白质动态结构的改变,以及由突变和配体结合产生的相互作用。最后,这篇综述描述了通过nMS和新一代具有更高亮度和更短脉冲的先进极紫外光源进行蛋白质分析的未来发展前景。
公众号