关键词: 3D hierarchical architecture Attapulgite intercalated g-C(3)N(4) Photocatalytic hydrogen production Z-scheme heterojunction

来  源:   DOI:10.1016/j.jcis.2024.06.243

Abstract:
Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C3N4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C3N4/ZnIn2S4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C3N4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn2S4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C3N4, and ZnIn2S4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 μmol g-1h-1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C3N4 by a factor of 475 and ZnIn2S4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field.
摘要:
具有适合石墨氮化碳(g-C3N4)的能带排列的分层结构的构建在提高光催化剂的效率中起着关键作用。在这项研究中,一种新型凹凸棒石插层g-C3N4/ZnIn2S4纳米复合材料(ZIS/CN/ATP,缩写为ZCA)是使用冷冻干燥技术成功合成的,热聚合,和简单的低温水热法。凹凸棒石(ATP)插入g-C3N4中以有效调节其层间结构。结果显示其内部空间大幅扩大,从而有利于提供额外的活性位点以改善ZnIn2S4的分散性。值得注意的是,优化的光催化剂,包含ATP的质量比,g-C3N4和ZnIn2S4分别为1:1:2.5,在不需要Pt助催化剂的情况下,实现了3906.15μmolg-1h-1的出色析氢速率。该速率超过原始g-C3N4的因子475和ZnIn2S4的因子5,表示性能的显著改进。这种显着增强主要归因于较高的比表面积,更丰富的活跃网站,加宽的光响应范围,ZCA复合光催化剂的高效界面电荷转移通道。此外,使用多种表征技术彻底研究了三明治状层状结构异质结的Z方案光催化机理。这项工作提供了新的见解,提高光催化性能,通过扩大利用天然矿物,为这一领域的未来发展铺平了道路。
公众号