关键词: aquaculture wastewater denitrification filling hydraulic retention time packed bed biofilm reactor

Mesh : Biofilms / growth & development Bioreactors / microbiology Water Purification / methods Wastewater / microbiology chemistry Aquaculture Nitrogen / metabolism Charcoal / chemistry Bacteria / genetics isolation & purification metabolism growth & development Biological Oxygen Demand Analysis Microbiota Waste Disposal, Fluid / methods Water Quality

来  源:   DOI:10.1093/lambio/ovae060

Abstract:
This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.
摘要:
该研究旨在评估两种选定的填料及其组合在各种工艺条件下使用填充床生物膜反应器(PBBR)改善水产养殖废水水质的处理效率。使用的填料是纳米片(NS),活性炭(AC),以及两者的结合。结果表明,使用组合填料和4h的HRT显着提高了PBBR中的水质。COD的去除率,NO2--N,TSS,叶绿素a为63.55%,74.25%,62.75%,92.85%,分别。微生物群分析显示,NS的存在增加了与氮去除相关的微生物门的丰度,如Nitrosirae和变形杆菌。M1和M2群落之间的差异很小。此外,不同PBBR样品中的微生物群对碳源表现出相似的偏好,碳水化合物和氨基酸是微生物群最常用的碳源。这些结果表明,在PBBR中NS和AC填料的组合在4h的HRT下运行时有效地提高了水产养殖废水的处理效率。这些发现为优化水产养殖废水处理系统的设计提供了有价值的见解。
公众号