关键词: H2O2 production N2 and CO2 reduction reactions artificial enzymes energy storage and conversion devices hydrogen and oxygen evolution reactions sensors transition‐metal atoms

来  源:   DOI:10.1002/advs.202403197

Abstract:
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
摘要:
修改单的协调或局部环境,di-,三-,多金属原子(SMA/DMA/TMA/MMA)基材料是提高催化活性的最佳策略之一,选择性,和这些材料的长期耐久性。金属原子基材料支撑的先进板材已成为可再生能源转换系统领域的关键课题,存储设备,传感器,和生物医学由于最大的原子利用效率,精确定位的金属中心,特定的电子构型,独特的反应性,和精确的化学可调性。几种薄片材料为金属原子基材料提供了极好的支持,并且在能源应用中具有吸引力,传感器,和医学研究,比如在氧气还原中,氧气生产,制氢,燃料生产,选择性化学检测,和酶促反应。具有金属杂原子的强金属-金属和金属-碳(即,N,S,P,B,和O)键由于强界面相互作用而稳定和优化金属原子的电子结构,产生优异的催化活性。这些材料为理解多步化学反应的基本问题提供了极好的模型。本文根据实验和理论数据,总结了具有不同活性位点的金属原子基材料的底物结构-活性关系。此外,新的合成程序,物理化学特征,讨论了能源和生物医学应用。最后,提出了开发有效的SMA/DMA/TMA/MMA基材料的剩余挑战。
公众号