关键词: femur kudzu osteoclast osteoporosis puerarin

Mesh : Animals Isoflavones / pharmacology administration & dosage Ovariectomy Osteoclasts / drug effects Female Mice Femur / drug effects metabolism Pueraria / chemistry Cell Differentiation / drug effects RAW 264.7 Cells Bone Resorption / prevention & control Plant Extracts / pharmacology administration & dosage Osteoporosis / prevention & control drug therapy Tartrate-Resistant Acid Phosphatase / metabolism

来  源:   DOI:10.3177/jnsv.70.262

Abstract:
Osteoporosis is characterized by bone loss and deterioration in bone microstructure, leading to bone fragility. It is strongly correlated with menopause in women. Previously, we reported that diets supplemented with a kudzu (Pueraria lobata) vine extract suppressed bone resorption in ovariectomized (OVX) mice, a postmenopausal model. The main isoflavone in kudzu is puerarin (daidzein-8-C-glycoside). Puerarin (daidzein-8-C-glycoside), which is main isoflavone of kudzu, probably contributes to the beneficial effect. However, the underlying mechanism is unclear. Therefore, the nutrikinetics of puerarin and the comparison with the suppressive effects of kudzu isoflavones on osteoclast differentiation was examined in this study. We demonstrated that orally administered puerarin was absorbed from the gut and entered the circulation in an intact form. In addition, puerarin accumulated in RAW264.7 pre-osteoclast cells in a time-dependent manner. Tartrate-resistant acid phosphatase activity was decreased by puerarin treatment in a concentration-dependent manner in RAW264.7 cells stimulated with the receptor activator of nuclear factor kappa-B ligand. Ovariectomy-induced elevated bone resorption was suppressed, and the fragile bone strength was improved by puerarin ingestion in the diet. These findings suggested that orally administered puerarin was localized in bone tissue and suppressed bone resorption and osteoclastogenesis in ovariectomized mice.
摘要:
骨质疏松的特征是骨丢失和骨微结构的恶化。导致骨骼脆弱。它与女性更年期密切相关。以前,我们报道了补充葛根(葛根)藤提取物的饮食抑制了卵巢切除(OVX)小鼠的骨吸收,绝经后的模特.葛藤中的主要异黄酮是葛根素(大豆苷元-8-C-糖苷)。葛根素(大豆苷元-8-C-糖苷),是葛根的主要异黄酮,可能有助于有益的效果。然而,潜在机制尚不清楚.因此,本研究研究了葛根素的营养动力学以及葛根异黄酮对破骨细胞分化抑制作用的比较。我们证明口服葛根素从肠道吸收并以完整的形式进入循环。此外,葛根素以时间依赖性方式在RAW264.7前破骨细胞中积累。在核因子κB配体的受体激活剂刺激的RAW264.7细胞中,葛根素处理以浓度依赖性方式降低了抗酒石酸酸性磷酸酶的活性。卵巢切除术引起的骨吸收升高被抑制,饮食中葛根素的摄入提高了脆弱的骨强度。这些发现表明,口服葛根素位于骨组织中,并抑制了卵巢切除小鼠的骨吸收和破骨细胞生成。
公众号