关键词: Anthocyanins Blueberry Chromatic characteristic Copigmentation EGCG Wine

Mesh : Anthocyanins / chemistry Blueberry Plants / chemistry Fermentation Coumaric Acids / chemistry Molecular Docking Simulation Gallic Acid / chemistry analogs & derivatives Phenols / analysis chemistry Color Catechin / chemistry analogs & derivatives Fruit and Vegetable Juices / analysis Fruit / chemistry

来  源:   DOI:10.1016/j.foodres.2024.114632

Abstract:
To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.
摘要:
提高蓝莓发酵饮料中花色苷(ACNs)的颜色稳定性,ACN和3种不同酚类化合物之间的分子间共移,包括(-)-表没食子儿茶素没食子酸酯(EGCG),阿魏酸(FA),和没食子酸(GA)作为色素,在模型和真正的蓝莓发酵饮料中进行了比较,分别。在模型蓝莓发酵饮料中,EGCG共染色的ACN呈现高吸光度(0.34a.u.)和发红(27.09±0.17)。通过3种不同酚类化合物的参与进行的色素沉着显示出所有自发的放热反应,使用EGCG作为对照,系统的吉布斯自由能(ΔG°)最低(-5.90kJ/mol)。此外,分子对接模型验证了ACN与色素之间通过氢键和π-π堆叠形成二元配合物。存在高吸光度(1.02a.u.),聚合物颜色百分比(PC%,68.3%),和良好的色彩饱和度(C*ab,43.28)在真正的蓝莓发酵饮料中陈化90天,使用EGCG作为色素,在葡萄酒中保存了更多的malvidin-3-O-葡萄糖苷。这一发现可以指导未来改善颜色的蓝莓发酵饮料的工业生产。
公众号