关键词: AsA-GSH pathway Bacillus abiotic stress auxin ion homeostasis osmotic stress stress signaling

来  源:   DOI:10.3389/fpls.2024.1419764   PDF(Pubmed)

Abstract:
UNASSIGNED: The ongoing global expansion of salt-affected land is a significant factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This experiment explores the mitigation of salt-induced damage in rice (cv BRRI dhan100) following the application of plant growth-promoting rhizobacteria (PGPR).
UNASSIGNED: Rice seedlings, at five- and six-weeks post-transplanting, were subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B. aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three critical stages: transplantation of 42-day-old seedlings, vegetative stage at five weeks post-transplantation, and panicle initiation stage at seven weeks post-transplantation.
UNASSIGNED: Salt stress induced osmotic stress, ionic imbalances, and oxidative damage in rice plants, with consequent negative effects on growth, decrease in photosynthetic efficiency, and changes in hormonal regulation, along with increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing water balance, increasing nutrient uptake, improving photosynthetic attributes, bolstering hormone synthesis, and enhancing MG detoxification.
UNASSIGNED: These findings highlight the potential of PGPR to bolster physiological and biochemical functionality in rice by serving as an effective buffer against salt stress-induced damage. B. subtilis showed the greatest benefits, while both the endophytic and epiphytic B. aryabhattai had commendable effects in mitigating salt stress-induced damage in rice plants.
摘要:
受盐影响的土地的全球扩张是一个重要因素,限制作物的生长和产量,特别是水稻(水稻)。本实验探讨了在施用植物生长促进根际细菌(PGPR)后减轻水稻(cvBRRIdhan100)中盐引起的损害。
水稻幼苗,移植后五到六周,以7天的间隔使用50和100mMNaCl进行盐胁迫处理。由内生PGPR(枯草芽孢杆菌和B.aryabhattai)和附生PGPR(B.aryabhattai)在三个关键阶段进行:移植42天大的幼苗,移植后五周的营养阶段,移植后7周的穗起始阶段。
盐胁迫诱导的渗透胁迫,离子失衡,和水稻植株的氧化损伤,从而对增长产生负面影响,光合效率降低,和荷尔蒙调节的变化,随着甲基乙二醛(MG)毒性增加。PGPR处理通过改善植物抗氧化防御能力来减轻盐度效应,恢复离子平衡,加强水平衡,增加营养吸收,改善光合属性,促进激素合成,和增强MG排毒。
这些发现强调了PGPR通过作为盐胁迫诱导的损伤的有效缓冲来增强水稻生理和生化功能的潜力。枯草芽孢杆菌表现出最大的好处,而内生和附生的B.aryabhattai在减轻盐胁迫引起的水稻植物损伤方面都具有值得称赞的作用。
公众号