关键词: Lactobacillus reuteri intestinal health probiotic characteristics whole-genome sequence

Mesh : Limosilactobacillus reuteri Probiotics Animals Gastrointestinal Microbiome Whole Genome Sequencing Mice Swine Genome, Bacterial Salmonella typhimurium / genetics drug effects Anti-Bacterial Agents / pharmacology Virulence Factors / genetics

来  源:   DOI:10.3390/nu16121900   PDF(Pubmed)

Abstract:
Gut microbiota are the microbial organisms that play a pivotal role in intestinal health and during disease conditions. Keeping in view the characteristic functions of gut microbiota, in this study, Lactobacillus reuteri TPC32 (L. reuteri TPC32) was isolated and identified, and its whole genome was analyzed by the Illumina MiSeq sequencing platform. The results revealed that L. reuteri TPC32 had high resistance against acid and bile salts with fine in vitro antibacterial ability. Accordingly, a genome sequence of L. reuteri TPC32 has a total length of 2,214,495 base pairs with a guanine-cytosine content of 38.81%. Based on metabolic annotation, out of 2,212 protein-encoding genes, 118 and 101 were annotated to carbohydrate metabolism and metabolism of cofactors and vitamins, respectively. Similarly, drug-resistance and virulence genes were annotated using the comprehensive antibiotic research database (CARD) and the virulence factor database (VFDB), in which vatE and tetW drug-resistance genes were annotated in L. reuteri TPC32, while virulence genes are not annotated. The early prevention of L. reuteri TPC32 reduced the Salmonella typhimurium (S. Typhimurium) infection in mice. The results show that L. reuteri TPC32 could improve the serum IgM, decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the 16S rRNA analysis, the L. reuteri TPC32 results affect the recovery of intestinal microbiota from disease conditions and promote the multiplication of beneficial bacteria. These results provide new insights into the biological functions and therapeutic potential of L. reuteri TPC32 for treating intestinal inflammation.
摘要:
肠道微生物群是在肠道健康和疾病状况中起关键作用的微生物。考虑到肠道微生物群的特征功能,在这项研究中,罗伊氏乳杆菌TPC32(L.罗伊特TPC32)被分离和鉴定,并通过IlluminaMiSeq测序平台分析其全基因组。结果表明,罗伊乳杆菌TPC32对酸和胆汁盐具有较高的抗性,具有良好的体外抗菌能力。因此,罗伊氏乳杆菌TPC32的基因组序列的总长度为2,214,495个碱基对,鸟嘌呤-胞嘧啶含量为38.81%。基于代谢注释,在2,212个蛋白质编码基因中,118和101注解碳水化合物代谢和辅因子和维生素的代谢,分别。同样,使用综合抗生素研究数据库(CARD)和毒力因子数据库(VFDB)注释耐药性和毒力基因,其中vatE和tetW耐药基因在罗伊氏乳杆菌TPC32中被注释,而毒力基因未被注释。罗伊氏乳杆菌TPC32的早期预防减少了鼠伤寒沙门氏菌(S.鼠伤寒)在小鼠中的感染。结果表明,罗伊乳杆菌TPC32能提高血清IgM,减少肠道细胞因子分泌,缓解肠道细胞因子风暴,通过提高sIgA表达来增强肠道生化屏障功能,加强肠道物理屏障功能。同时,基于16SrRNA分析,罗伊氏乳杆菌TPC32结果影响肠道微生物群从疾病状态的恢复并促进有益细菌的繁殖。这些结果为罗伊氏乳杆菌TPC32治疗肠道炎症的生物学功能和治疗潜力提供了新的见解。
公众号