关键词: 3D genome Escherichia coli chromosome conformation thermal adaptation transcriptome

来  源:   DOI:10.3390/microorganisms12061229   PDF(Pubmed)

Abstract:
The spatial organization of bacterial chromosomes is crucial for cellular functions. It remains unclear how bacterial chromosomes adapt to high-temperature stress. This study delves into the 3D genome architecture and transcriptomic responses of Escherichia coli under heat-stress conditions to unravel the intricate interplay between the chromosome structure and environmental cues. By examining the role of macrodomains, chromosome interaction domains (CIDs), and nucleoid-associated proteins (NAPs), this work unveils the dynamic changes in chromosome conformation and gene expression patterns induced by high-temperature stress. It was observed that, under heat stress, the short-range interaction frequency of the chromosomes decreased, while the long-range interaction frequency of the Ter macrodomain increased. Furthermore, two metrics, namely, Global Compactness (GC) and Local Compactness (LC), were devised to measure and compare the compactness of the chromosomes based on their 3D structure models. The findings in this work shed light on the molecular mechanisms underlying thermal adaptation and chromosomal organization in bacterial cells, offering valuable insights into the complex inter-relationships between environmental stimuli and genomic responses.
摘要:
细菌染色体的空间组织对于细胞功能至关重要。目前尚不清楚细菌染色体如何适应高温胁迫。这项研究深入研究了热应激条件下大肠杆菌的3D基因组结构和转录组反应,以解开染色体结构和环境线索之间的复杂相互作用。通过检查宏域的作用,染色体相互作用域(CID),和类核相关蛋白(NAP),这项工作揭示了高温胁迫引起的染色体构象和基因表达模式的动态变化。据观察,在热应力下,染色体的短程相互作用频率降低,而Ter宏域的长程相互作用频率增加。此外,两个指标,即,全局紧度(GC)和局部紧度(LC),被设计为基于其3D结构模型来测量和比较染色体的紧密度。这项工作的发现揭示了细菌细胞热适应和染色体组织的分子机制,为环境刺激和基因组反应之间复杂的相互关系提供有价值的见解。
公众号