关键词: Naringin Notch signaling Staphylococcus aureus bone infection osteomyelitis

Mesh : Animals Flavanones / pharmacology Mice Osteomyelitis / drug therapy microbiology metabolism pathology Staphylococcus aureus Staphylococcal Infections / drug therapy metabolism microbiology pathology Anti-Bacterial Agents / pharmacology Anti-Inflammatory Agents / pharmacology Humans Male Osteogenesis / drug effects Femur / pathology metabolism microbiology drug effects

来  源:   DOI:10.1002/jbt.23753

Abstract:
Osteomyelitis is an invasive bone infection that can lead to severe pain and even disability, posing a challenge for orthopedic surgery. Naringin can reduce bone-related inflammatory conditions. This study aimed to elucidate the function and mechanism of naringin in a Staphylococcus aureus-induced mouse model of osteomyelitis. Femurs of S. aureus-infected mice were collected after naringin administration and subjected to microcomputed tomography to analyze cortical bone destruction and bone loss. Bacterial growth in femurs was also assessed. Proinflammatory cytokine levels in mouse femurs were measured using enzyme-linked immunosorbent assays. Pathological changes and bone resorption were analyzed using hematoxylin and eosin staining and tartrate-resistant acid phosphatase staining, respectively. Quantitative reverse transcription polymerase chain reaction and western blot analysis were used to quantify the messenger RNA and protein expression of osteogenic differentiation-associated genes in the femurs. The viability of human bone marrow-derived stem cells (hBMSCs) was determined using cell counting kit-8. Alizarin Red S staining and alkaline phosphatase staining were performed to assess the formation of mineralization nodules and bone formation in vitro. Notch signaling-related protein levels in femur tissues and hBMSCs were assessed using western blot analysis. Experimental results revealed that naringin alleviated S. aureus-induced cortical bone destruction and bone loss in mice by increasing the bone volume/total volume ratio. Naringin suppressed S. aureus-induced bacterial growth and inflammation in femurs. Moreover, it alleviated histopathological changes, inhibited bone resorption, and increased the expression of osteogenic markers in osteomyelitic mice. It increased the viability of hBMSCs and promoted their differentiation and bone mineralization in vitro. Furthermore, naringin activated Notch signaling by upregulating the protein levels of Notch1, Jagged1, and Hes1 in the femurs of model mice and S. aureus-stimulated hBMSCs. In conclusion, naringin reduces bacterial growth, inflammation, and bone resorption while upregulating the expression of osteogenic markers in S. aureus-infected mice and hBMSCs by activating Notch signaling.
摘要:
骨髓炎是一种侵入性骨感染,可导致严重疼痛甚至残疾,给骨科手术带来挑战。柚皮苷可以减轻骨相关的炎症。本研究旨在阐明柚皮苷在金黄色葡萄球菌诱导的小鼠骨髓炎模型中的作用及机制。在给予柚皮苷后收集金黄色葡萄球菌感染的小鼠的股骨,并进行显微计算机断层扫描以分析皮质骨破坏和骨丢失。还评估了股骨中的细菌生长。使用酶联免疫吸附测定法测量小鼠股骨中的促炎细胞因子水平。采用苏木精和伊红染色和抗酒石酸酸性磷酸酶染色分析病理变化和骨吸收,分别。定量逆转录聚合酶链反应和蛋白质印迹分析用于定量股骨成骨分化相关基因的信使RNA和蛋白质表达。使用细胞计数试剂盒-8测定人骨髓来源的干细胞(hBMSC)的活力。进行茜素红S染色和碱性磷酸酶染色以评估矿化结节的形成和体外骨形成。使用蛋白质印迹分析评估股骨组织和hBMSCs中的Notch信号传导相关蛋白水平。实验结果表明,柚皮苷通过增加骨体积/总体积比减轻金黄色葡萄球菌诱导的小鼠皮质骨破坏和骨丢失。柚皮苷抑制金黄色葡萄球菌诱导的股骨细菌生长和炎症。此外,它缓解了组织病理学变化,抑制骨吸收,并增加了骨髓小鼠成骨标志物的表达。它在体外增加了hBMSCs的活力并促进其分化和骨矿化。此外,柚皮苷通过上调模型小鼠股骨和金黄色葡萄球菌刺激的hBMSCs中Notch1,Jagged1和Hes1的蛋白质水平来激活Notch信号。总之,柚皮苷减少细菌生长,炎症,和骨吸收,同时通过激活Notch信号上调金黄色葡萄球菌感染的小鼠和hBMSCs中成骨标志物的表达。
公众号