关键词: HIV-associated neurocognitive disorders Molecular docking Molecular dynamic simulation Molecular modelling Subtype B Subtype C Tat polymorphisms

Mesh : tat Gene Products, Human Immunodeficiency Virus / genetics metabolism chemistry HIV-1 / genetics classification metabolism Molecular Dynamics Simulation Protein Binding Humans Amino Acid Substitution Molecular Docking Simulation HIV Long Terminal Repeat / genetics Amino Acids / genetics metabolism Models, Molecular

来  源:   DOI:10.1186/s12985-024-02419-6   PDF(Pubmed)

Abstract:
BACKGROUND: HIV-1 produces Tat, a crucial protein for transcription, viral replication, and CNS neurotoxicity. Tat interacts with TAR, enhancing HIV reverse transcription. Subtype C Tat variants (C31S, R57S, Q63E) are associated with reduced transactivation and neurovirulence compared to subtype B. However, their precise impact on Tat-TAR binding is unclear. This study investigates how these substitutions affect Tat-TAR interaction.
METHODS: We utilized molecular modelling techniques, including MODELLER, to produce precise three-dimensional structures of HIV-1 Tat protein variants. We utilized Tat subtype B as the reference or wild type, and generated Tat variants to mirror those amino acid variants found in Tat subtype C. Subtype C-specific amino acid substitutions were selected based on their role in the neuropathogenesis of HIV-1. Subsequently, we conducted molecular docking of each Tat protein variant to TAR using HDOCK, followed by molecular dynamic simulations.
RESULTS: Molecular docking results indicated that Tat subtype B (TatWt) showed the highest affinity for the TAR element (-262.07), followed by TatC31S (-261.61), TatQ63E (-256.43), TatC31S/R57S/Q63E (-238.92), and TatR57S (-222.24). However, binding free energy analysis showed higher affinities for single variants TatQ63E (-349.2 ± 10.4 kcal/mol) and TatR57S (-290.0 ± 9.6 kcal/mol) compared to TatWt (-247.9 ± 27.7 kcal/mol), while TatC31S and TatC31S/R57SQ/63E showed lower values. Interactions over the protein trajectory were also higher for TatQ63E and TatR57S compared to TatWt, TatC31S, and TatC31S/R57SQ/63E, suggesting that modifying amino acids within the Arginine/Glutamine-rich region notably affects TAR interaction. Single amino acid mutations TatR57S and TatQ63E had a significant impact, while TatC31S had minimal effect. Introducing single amino acid variants from TatWt to a more representative Tat subtype C (TatC31S/R57SQ/63E) resulted in lower predicted binding affinity, consistent with previous findings.
CONCLUSIONS: These identified amino acid positions likely contribute significantly to Tat-TAR interaction and the differential pathogenesis and neuropathogenesis observed between subtype B and subtype C. Additional experimental investigations should prioritize exploring the influence of these amino acid signatures on TAR binding to gain a comprehensive understanding of their impact on viral transactivation, potentially identifying them as therapeutic targets.
摘要:
背景:HIV-1产生Tat,转录的关键蛋白质,病毒复制,和中枢神经系统神经毒性。Tat与TAR互动,增强HIV逆转录。亚型CTat变体(C31S,R57S,与B亚型相比,Q63E)与降低的反式激活和神经毒力有关。它们对Tat-TAR结合的确切影响尚不清楚。本研究调查了这些替代如何影响Tat-TAR相互作用。
方法:我们利用分子建模技术,包括Modeller,以产生HIV-1Tat蛋白变体的精确三维结构。我们使用Tat亚型B作为参考或野生型,并产生Tat变体以反映在Tat亚型C中发现的那些氨基酸变体。亚型C特异性氨基酸取代是基于它们在HIV-1的神经发病机理中的作用而选择的。随后,我们使用HDOCK将每个Tat蛋白变体与TAR进行分子对接,其次是分子动力学模拟。
结果:分子对接结果表明,Tat亚型B(TatWt)对TAR元件的亲和力最高(-262.07),其次是TatC31S(-261.61),TatQ63E(-256.43),TatC31S/R57S/Q63E(-238.92),和TatR57S(-222.24)。然而,结合自由能分析显示,与TatWt(-247.9±27.7kcal/mol)相比,单个变体TatQ63E(-349.2±10.4kcal/mol)和TatR57S(-290.0±9.6kcal/mol)的亲和力更高,而TatC31S和TatC31S/R57SQ/63E显示较低的值。与TatWt相比,TatQ63E和TatR57S在蛋白质轨迹上的相互作用也更高。TatC31S,和TatC31S/R57SQ/63E,这表明修饰富含精氨酸/谷氨酰胺的区域内的氨基酸显着影响TAR相互作用。单氨基酸突变TatR57S和TatQ63E有显著影响,而TatC31S影响最小。将单个氨基酸变体从TatWt引入更具代表性的Tat亚型C(TatC31S/R57SQ/63E)导致较低的预测结合亲和力,与以前的发现一致。
结论:这些确定的氨基酸位置可能对Tat-TAR相互作用以及B亚型和C亚型之间观察到的差异发病机制和神经发病机制有重要贡献。其他实验研究应优先探索这些氨基酸特征对TAR结合的影响,以全面了解它们对病毒反式激活的影响。可能将它们确定为治疗靶标。
公众号