关键词: Bacterial membrane vesicle EV sensing Environmental sensors Extracellular vesicle Label-free sensor Monitoring sustainability Multiplexed detection Nanoplasmonics Optical sensor Point-of-care diagnostics Surface-enhanced Raman spectroscopy (SERS)

来  源:   DOI:10.1186/s40580-024-00431-8   PDF(Pubmed)

Abstract:
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
摘要:
细胞外囊泡(EV)是早期诊断疾病的有前途的工具,和细菌膜囊泡(MV)在健康和环境监测中尤为重要。然而,检测EV或细菌MV对基于EV的诊断的临床转化提出了重大挑战。在这篇评论中,我们对纳米等离子体传感的基础知识进行了全面的讨论,并强调了基于纳米等离子体的光学传感器的最新发展,以有效地识别EV或细菌MV。我们探索为EV或细菌MV检测量身定制的各种纳米等离子体传感器,强调通过金纳米粒子及其多聚体的局部表面等离子体共振的应用。此外,我们重点介绍了基于使用等离子体薄膜和纳米图案化结构的表面等离子体激元极化子的先进EV检测技术。此外,我们评估了表面增强拉曼光谱在识别和分类这些囊泡方面的改进检测能力,等离子体纳米结构的帮助。纳米等离子体传感技术具有显著的精度和灵敏度,使它们成为临床应用中准确检测EV的潜在工具,促进即时分子诊断。最后,我们总结了与纳米等离子体EV或细菌MV传感器相关的挑战,并为这个不断发展的领域提供了潜在的未来方向的见解。
公众号