关键词: BhaROSA Model Radon Remote sensing Signal amplification Tracer

来  源:   DOI:10.1016/j.jenvrad.2024.107482

Abstract:
Radon, a natural radioactive gas, serves as a valuable tracer in geophysical research and atmospheric science such as detecting stress induced signal in bedrock. However, the conventional radon monitoring methods often lack the sensitivity required to accurately capture such signals. This limitation, coupled with interference from meteorological effects, poses challenges in distinguishing genuine stress-induced signals. In this study, we propose a novel approach utilizing radon concentration gradients at the soil-air interface to enhance sensitivity and detect stress induced radon signals more effectively. Drawing from pressure diffusion models, we demonstrate how seismic stress accumulation in bedrock alters radon profiles in the sub-soil, providing insights into the mechanisms underlying stress-induced radon variations. Building upon this theoretical framework, we introduce the \"Bhabha Radon Observatory for Seismic Application (BhaROSA),\" a remote sensing, solar-powered radon observatory designed for widespread deployment and continuous unattended monitoring for big database generation. Field experiments comparing BhaROSA\'s performance to conventional soil probe techniques validate and confirm the superior sensitivity in line with theoretical predictions. This innovative approach holds promise for improving our understanding of stress dynamics in bedrock and has potential applications in various geophysical and atmospheric science such as earthquake precursory research, geo-genic radon potential and risk assessment. To progress, we propose international alliance and application of deep learning to a big database of precursor signals, which may lead to more informed conclusions on earthquake predictability-an enduring and unsolved challenge for humanity.
摘要:
氡,一种天然的放射性气体,在地球物理研究和大气科学中作为有价值的示踪剂,例如检测基岩中的应力诱导信号。然而,传统的氡监测方法往往缺乏准确捕获此类信号所需的灵敏度。这种限制,加上气象效应的干扰,在区分真正的压力诱发信号方面提出了挑战。在这项研究中,我们提出了一种新的方法,利用土壤-空气界面的氡浓度梯度来提高灵敏度,更有效地检测应力诱导的氡信号。从压力扩散模型中提取,我们演示了基岩中的地震应力积累如何改变底土中的氡剖面,提供对应力诱发氡变化的潜在机制的见解。在这个理论框架的基础上,我们介绍\“BhabhaRadon地震应用天文台(BhaROSA),“一个遥感,太阳能氡观测站,专为大规模数据库生成的广泛部署和持续无人值守监测而设计。将BhaROSA的性能与常规土壤探针技术进行比较的田间试验验证并确认了符合理论预测的优异灵敏度。这种创新方法有望提高我们对基岩应力动力学的理解,并在各种地球物理和大气科学中具有潜在的应用,例如地震前兆研究。地质氡潜力和风险评估。为了进步,我们提出了国际联盟和深度学习应用到一个大的前体信号数据库,这可能会导致关于地震可预测性的更明智的结论——这是人类面临的一个持久而未解决的挑战。
公众号