关键词: antifouling antimicrobial carbon dots in situ synthesis melt extrusion metallic nanoparticles polymer nanocomposites

来  源:   DOI:10.3390/polym16111611   PDF(Pubmed)

Abstract:
It is well-established that the structural, morphological and performance characteristics of nanoscale materials critically depend upon the dispersion state of the nanofillers that is, in turn, largely determined by the preparation protocol. In this report, we review synthetic strategies that capitalise on the in situ generation of nanoparticles on and within polymeric materials, an approach that relies on the chemical transformation of suitable precursors to functional nanoparticles synchronous with the build-up of the nanohybrid systems. This approach is distinctively different compared to standard preparation methods that exploit the dispersion of preformed nanoparticles within the macromolecular host and presents advantages in terms of time and cost effectiveness, environmental friendliness and the uniformity of the resulting composites. Notably, the in situ-generated nanoparticles tend to nucleate and grow on the active sites of the macromolecular chains, showing strong adhesion on the polymeric host. So far, this strategy has been explored in fabrics and membranes comprising metallic nanoparticles (silver, gold, platinum, copper, etc.) in relation to their antimicrobial and antifouling applications, while proof-of-concept demonstrations for carbon- and silica-based nanoparticles as well as titanium oxide-, layered double hydroxide-, hectorite-, lignin- and hydroxyapatite-based nanocomposites have been reported. The nanocomposites thus prepared are ideal candidates for a broad spectrum of applications such as water purification, environmental remediation, antimicrobial treatment, mechanical reinforcement, optical devices, etc.
摘要:
这是公认的结构,纳米级材料的形态和性能特征主要取决于纳米填料的分散状态,即反过来,很大程度上取决于准备方案。在这份报告中,我们回顾了利用聚合物材料上和聚合物材料内纳米颗粒原位生成的合成策略,一种方法,依赖于合适的前体的化学转化为功能纳米颗粒与纳米混合体系的建立同步。与利用预制纳米颗粒在大分子主体中的分散的标准制备方法相比,这种方法具有明显的不同,并且在时间和成本效益方面具有优势。环境友好性和所得复合材料的均匀性。值得注意的是,原位生成的纳米颗粒倾向于在大分子链的活性位点上成核和生长,显示在聚合物主体上的强粘附性。到目前为止,这种策略已经在包含金属纳米颗粒(银,黄金,铂金,铜,等。)关于它们的抗菌和防污应用,虽然碳基和硅基纳米粒子以及氧化钛的概念验证演示,层状双氢氧化物-,hectorite-,已经报道了木质素和羟基磷灰石基纳米复合材料。如此制备的纳米复合材料是广泛应用如水净化的理想候选物。环境修复,抗菌治疗,机械加固,光学设备,等。
公众号