关键词: food‐derived extracellular vesicles gut barrier gut microbiota gut‐liver axis metabolic disease milk‐derived extracellular vesicles nanomedicine oral drug delivery system plant‐derived extracellular vesicles probiotics

Mesh : Humans Extracellular Vesicles / metabolism Liver / metabolism Gastrointestinal Microbiome Animals Gastrointestinal Tract / metabolism Food

来  源:   DOI:10.1002/jev2.12466   PDF(Pubmed)

Abstract:
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
摘要:
食物来源的细胞外囊泡(FEV)是从母乳等膳食材料中获得的纳米级膜囊泡,植物和益生菌。与其他电动汽车不同,FEV可以在胃肠道中的恶劣降解条件下存活并到达肠道。这种独特的功能使FEV成为健康和口腔纳米医学中用于肠道疾病的有前途的益生元,如炎症性肠病。有趣的是,最近在非胃肠道疾病中也观察到了FEV的治疗效果。然而,机制仍不清楚甚至神秘。据推测,口服FEV可以进入血液,到达偏远的器官,从而在其中发挥治疗作用。然而,新出现的证据表明,到达胃肠道以外器官的FEV的量是微不足道的,并且可能不足以解释涉及肝脏等远程器官的疾病所取得的显着治疗效果。因此,我们在此提出,FEV主要通过调节肠道微环境,如屏障完整性和微生物群,在肠道中局部发挥作用。从而通过肠-肝轴在非胃肠道疾病中远程引发对肝脏的治疗影响。同样,通过FEV递送至胃肠系统的药物可能通过肠-肝轴起作用。由于肝脏是主要的代谢枢纽,肠道微环境可能与其他代谢疾病有关。事实上,许多非酒精性脂肪性肝病患者,肥胖,糖尿病和心血管疾病患有漏肠和生态失调。在这次审查中,我们概述了FEV的最新进展,并讨论了它们作为治疗剂和药物递送系统的生物医学应用,强调肠-肝轴在FEV治疗肠道疾病和代谢性疾病的作用机制中的关键作用。
公众号