关键词: adverse outcome pathways endocrine disruption gender new approach methodologies regulatory toxicology reproduction sexual development systems biology

来  源:   DOI:10.12688/openreseurope.17319.1   PDF(Pubmed)

Abstract:
The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.
摘要:
由暴露于内分泌干扰化学物质(EDC)引起的激素相关健康问题的患病率是一个重要的,增加,社会挑战。生育率的下降以及生殖障碍和其他内分泌相关疾病的发病率的上升突出了采取更多行动的紧迫性。为了应对环境中EDC日益增长的威胁,需要稳健可靠的测试方法来评估与内分泌干扰相关的各种终点。EDC还需要有效的监管框架,特别是随着当前在化学测试中越来越依赖非动物方法来测试当前的EDC识别范式,这要求在完整的生物体中观察到不利影响。尽管在预测毒理学领域取得了巨大的进步,在没有传统动物模型的情况下,内分泌系统的破坏和随后的不良健康影响可能特别难以预测。MERLON项目旨在通过整合多物种分子研究来加快进展,新方法方法(NAM),人类临床流行病学,和系统生物学提供机械见解,并探索基于NAM的EDC识别的前进方向。重点是性发育和功能,从胎儿生殖系统的性别分化到小青春期和青春期到性成熟。该项目旨在缩小现有的知识差距,以了解EDC对人类健康的影响,最终支持欧盟及其他地区对EDC的有效监管。
公众号