关键词: 3D micro-computed tomography Animal models Bioluminescence Fluorescence In vivo imaging Leishmania major Trypanosoma brucei Trypanosomatid parasites

Mesh : Animals Disease Models, Animal Mice Trypanosoma brucei brucei / pathogenicity Multimodal Imaging / methods Neglected Diseases / parasitology diagnostic imaging Trypanosomiasis, African / parasitology diagnostic imaging Luminescent Measurements / methods

来  源:   DOI:10.1016/bs.mcb.2024.04.003

Abstract:
African trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions. Whole-body bioluminescence and fluorescence imaging systems (BLI and FLI, respectively), are powerful tools to visualize and quantify the progression and distribution of these parasites in real-time within live animal models. By combining this technology with the engineering of stable T. brucei and Leishmania spp. strains expressing luciferase and/or fluorescent proteins, crucial aspects of the infection process including the parasites\' homing, the infection dynamics, the tissue tropism, or the efficacy of experimental treatments and vaccines can be deeply investigated. This methodology allows for enhanced sensitivity and resolution, elucidating previously unrecognized infection niches and dynamics. Importantly, whole-body in vivo imaging is non-invasive, enabling for longitudinal studies during the course of an infection in the same animal, thereby aligning with the \"3Rs\" principle of animal research. Here, we detail a protocol for the generation of dual-reporter T. brucei and L. major, and their use to infect mice and follow the spatiotemporal dynamics of infection by in vivo imaging systems. Additionally, 3D micro-computed tomography (μCT) coupled to BLI in T. brucei-infected animals is applied to gain insights into the anatomical parasite distribution. This Chapter underscores the potential of these bioimaging modalities as indispensable tools in parasitology, paving the way for novel therapeutic strategies and deeper insights into host-parasite interactions.
摘要:
非洲锥虫酶和利什曼酶是严重被忽视的热带病(NTDs),影响全球数百万人,严重的健康和社会经济后果,尤其是在流行地区。了解布鲁氏锥虫和利什曼原虫的发病机理和传播。寄主体内的寄生虫对于有效干预措施的发展至关重要。全身生物发光和荧光成像系统(BLI和FLI,分别),是在活体动物模型中实时可视化和量化这些寄生虫的进展和分布的强大工具。通过将该技术与稳定的T.brucei和利什曼原虫的工程相结合。表达荧光素酶和/或荧光蛋白的菌株,感染过程的关键方面,包括寄生虫归巢,感染动力学,组织嗜性,或者可以深入研究实验性治疗和疫苗的功效。这种方法可以提高灵敏度和分辨率,阐明以前未识别的感染生态位和动力学。重要的是,全身活体成像是非侵入性的,能够在同一只动物的感染过程中进行纵向研究,从而符合动物研究的“3Rs”原则。这里,我们详细介绍了生成双记者T.brucei和L.major的协议,以及它们在感染小鼠中的用途,并通过体内成像系统跟踪感染的时空动态。此外,应用3D显微计算机断层扫描(μCT)结合BLI在感染布鲁氏菌的动物中获得对解剖寄生虫分布的见解。本章强调了这些生物成像模式作为寄生虫学不可或缺的工具的潜力,为新的治疗策略和对宿主-寄生虫相互作用的更深入的见解铺平了道路。
公众号