Mesh : Polysaccharides / metabolism Humans Gastrointestinal Microbiome Bacteroides thetaiotaomicron / metabolism enzymology genetics Bacterial Proteins / metabolism genetics Crystallography, X-Ray Substrate Specificity Glycoside Hydrolases / metabolism genetics Mannose / metabolism Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase / metabolism genetics Multigene Family

来  源:   DOI:10.1038/s41467-024-48802-3   PDF(Pubmed)

Abstract:
Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-β-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.
摘要:
拟杆菌(同系物。拟杆菌)是人类胃肠道生态系统的重要成员,主要是由于其有效的聚糖降解机制,组织成称为多糖利用基因座(PULs)的基因簇。据报道,肠道共生体拟杆菌中高甘露糖(HM)N-聚糖糖多肽的分解代谢存在单个PUL,编码表面内切-β-N-乙酰氨基葡萄糖苷酶(ENGase),BT3987.这里,我们在B.thetaiotaomicron中发现了一个GH18家族的ENGase,BT1285,以独特的PUL编码,其自身的蛋白质库用于与BT3987相同的HMN-聚糖底物的分解代谢。我们使用X射线晶体学,电子显微镜,基于质谱的活性测量,丙氨酸扫描诱变和广泛的生物物理方法,以全面定义BT1285识别和水解HMN-聚糖的分子机制,表明BT1285和BT3987的稳定性和活性在明显不同的条件下是最佳的。BT1285表现出比BT3987显著更高的亲和力和不易接近的HMN-聚糖的更快水解。我们还发现,来自人类肠道定居的Alistipesfinegoldii的两种HM加工内切糖苷酶显示出特定条件的功能特性。总之,我们的数据表明,人类肠道微生物采用进化策略来表达不同的ENGase,以便在胃肠道中最佳地代谢相同的N-聚糖底物.
公众号