关键词: Talaromyces pinophilus Trichoderma lixii Biodegradation Laccases Polycyclic aromatic hydrocarbons (PAHs)

Mesh : Talaromyces / enzymology Laccase / metabolism chemistry isolation & purification genetics Trichoderma / enzymology Fungal Proteins / chemistry metabolism isolation & purification genetics Substrate Specificity Copper / metabolism Kinetics Oxidoreductases / metabolism chemistry isolation & purification Catalytic Domain

来  源:   DOI:10.1038/s41598-024-63959-z   PDF(Pubmed)

Abstract:
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1\'s peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12\'s unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
摘要:
广谱生物催化剂酶,漆膜,与将有害污染物完全降解为毒性较小的化合物有关。在这项研究中,从两种不同的子囊菌属中纯化两种细胞外产生的漆酶至均一。利氏木霉FLU1(TlFLU1)和嗜松塔拉菌FLU12(TpFLU12)。纯化的酶是单体单元,TlFLU1和TpFLU12的分子量分别为44kDa和68.7kDa,在SDS-PAGE和酶谱上。它在270-280nm处揭示了经典蛋白质吸收之外的独特特性,TlFLU1在270nm处的峰与II型Cu位点(白漆酶)的典型范围一致,而TpFLU12的独特600nm峰表示I型Cu2+位点(蓝漆酶),突出漆酶家族中不同的光谱指纹。Km和kcat值表明,与2,6-二甲氧基苯酚相比,ABTS是最合适的底物,咖啡酸和愈创木酚两种漆酶。生物信息学分析揭示了他的批评,Ile,和Arg残基用于活性位点的铜结合,在某些漆包中偏离了传统的两个His和Cys主题。漆酶的预测生物学功能包括氧化还原,木质素代谢,细胞金属离子稳态,苯丙素分解代谢,芳香化合物代谢,纤维素代谢,和生物粘附。此外,纯化的漆酶降解多环芳烃(PAHs)的研究表明,经过96小时的孵育期后,荧蒽和蒽的残留浓度显着降低。TlFLU1漆酶对荧蒽和蒽的转化率分别为39.0%和44.9%,分别,而TpFLU12漆酶实现了47.2%和50.0%的转化,分别。酶结构-功能关系研究为这些漆酶的催化机理提供了见解,可用于可能的生物技术和工业应用。
公众号