关键词: Deep-sea Mesophotic Microbial biogeography Mycoplasma Oceanoplasma Seascape ecology

来  源:   DOI:10.1186/s40793-024-00579-0   PDF(Pubmed)

Abstract:
BACKGROUND: Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral\'s genotype using RAD-sequencing.
RESULTS: Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts\' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location.
CONCLUSIONS: Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.
摘要:
背景:珊瑚相关的微生物群在菌落和位置之间差异很大,对宿主产生功能影响。然而,大多数珊瑚物种的全部变异程度仍然未知,特别是对于生活在更大范围的深水中的珊瑚。这里,我们对来自墨西哥湾北部中观和深海栖息地的四种八珊瑚物种的微生物群落进行了表征,MuriceaPendula,Swiftiaexserta,钙化三角洲,和Paramuriceabiscaya,使用16SrRNA基因元编码。我们在它们的范围内进行了广泛的采样,以测试物种之间和物种内部的微生物组差异,使用RAD测序检查随深度(53-2224m)和地理位置(超过680m)以及宿主珊瑚基因型而变化的环境因素的影响。
结果:珊瑚微生物群通常由扩增子序列变体主导,其丰度在其宿主范围内变化,包括共生类群:珊瑚类动物,内生单胞菌,Mollicutes的成员,还有BD1-7进化枝.珊瑚物种,深度,地理位置显著影响了多样性,微生物群落组成,和个体微生物的相对丰度。深度是决定物种内微生物组结构的最强环境因素,这影响了最主要的共生分类群的丰度。宿主基因型的差异,底部温度,和表面初级生产力可以解释与深度和地理位置相关的微生物组变化的重要部分。
结论:总而言之,这项工作表明,深水珊瑚的微生物群根据深度和其他环境条件在其范围内变化很大。它表明,深度对中游和深海珊瑚生态学的影响扩展到其对微生物群的影响,这可能具有功能后果。这项工作还确定了微生物的分布,包括潜在的寄生虫,可用于为应对深水地平线漏油事件提供恢复计划。
公众号