关键词: Fasciola gigantica ESP Insulin signalling pathway Transcription Trematode

Mesh : Animals Fasciola / genetics metabolism Signal Transduction Insulin / metabolism Helminth Proteins / metabolism genetics

来  源:   DOI:10.1186/s12917-024-04107-7   PDF(Pubmed)

Abstract:
BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation.
RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles.
CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.
摘要:
背景:胰岛素/胰岛素样信号(IIS)途径在哺乳动物和无脊椎动物中很常见,在巨大的Fasciola中,IIS途径未知。在本研究中,IIS途径在巨大的F.Gigantica中重建。我们定义了IIS途径中涉及的成分,并研究了这些基因在巨大的F.gigantica所有发育阶段的转录谱。此外,通过信号肽注释预测排泄和分泌产物(ESPs)中这些成分的存在。
结果:在巨大的F.gigantica中检测到IIS途径的核心成分。在这些蛋白质中,分析了一种配体(FgILP)和一种胰岛素样分子结合蛋白(FgIGFBP)。有趣的是,检测到三种受体(FgIR-1/FgIR-2/FgIR-3),和一个新的受体,FgIR-3进行了筛选,建议新的功能。Fg14-3-3ζ,Fgirs,Fgpp2a在42天大的青少年和70天大的青少年中显示出转录增加,而Fgilp,Fgigfb,Fgsgk-1,Fgakt-1,Fgir-3,Fgpten,和Fgaap-1在囊虫中显示出增加的转录。FgILP,FgIGFBP,FgIR-2,FgIR-3和两个转录因子(FgHSF-1和FgSKN-1)被预测存在于FgESPs中,表明了它们的外生作用。
结论:本研究有助于阐明IIS在巨型F.这将有助于理解吸虫和宿主之间的相互作用,以及在理解侥幸发育调控方面,也将为进一步表征吸虫的IIS途径奠定基础。
公众号