关键词: CNS plasticity electrical stimulation magnetic field stimulation neurorehabilitation optic nerve retinal ganglionic cells

Mesh : Humans Animals Optic Nerve Diseases / therapy Magnetic Field Therapy / methods Nerve Regeneration / physiology Electric Stimulation Therapy / methods Retinal Ganglion Cells / physiology pathology

来  源:   DOI:10.1002/dneu.22949

Abstract:
Visual impairment caused by optic neuropathies is irreversible because retinal ganglion cells (RGCs), the specialized neurons of the retina, do not have the capacity for self-renewal and self-repair. Blindness caused by optic nerve neuropathies causes extensive physical, financial, and social consequences in human societies. Recent studies on different animal models and humans have established effective strategies to prevent further RGC degeneration and replace the cells that have deteriorated. In this review, we discuss the application of electrical stimulation (ES) and magnetic field stimulation (MFS) in optic neuropathies, their mechanisms of action, their advantages, and limitations. ES and MFS can be applied effectively in the field of neuroregeneration. Although stem cells are becoming a promising approach for regenerating RGCs, the inhibitory environment of the CNS and the long visual pathway from the optic nerve to the superior colliculus are critical barriers to overcome. Scientific evidence has shown that adjuvant treatments, such as the application of ES and MFS help direct thetransplanted RGCs to extend their axons and form new synapses in the central nervous system (CNS). In addition, these techniques improve CNS neuroplasticity and decrease the inhibitory effects of the CNS. Possible mechanisms mediating the effects of electrical current on biological tissues include the release of anti-inflammatory cytokines, improvement of microcirculation, stimulation of cell metabolism, and modification of stem cell function. ES and MFS have the potential to promote angiogenesis, direct axon growth toward the intended target, and enhance appropriate synaptogenesis in optic nerve regeneration.
摘要:
视神经病变引起的视力损害是不可逆的,因为视网膜神经节细胞(RGC),视网膜的特殊神经元,没有自我更新和自我修复的能力。视神经神经病引起的失明导致广泛的身体,金融,以及人类社会的社会后果。最近对不同动物模型和人类的研究已经建立了有效的策略来防止RGC进一步变性并替换已经退化的细胞。在这次审查中,我们讨论了电刺激(ES)和磁场刺激(MFS)在视神经病变中的应用,他们的行动机制,他们的优势,和限制。ES和MFS可以有效地应用于神经再生领域。.尽管干细胞正在成为再生RGC的一种有希望的方法,中枢神经系统的抑制性环境和从视神经到上丘的长视觉通路是需要克服的关键障碍。科学证据表明,辅助治疗,例如ES和MFS的应用有助于指导移植的RGC延伸其轴突并在中枢神经系统(CNS)中形成新的突触。此外,这些技术改善了中枢神经系统的神经可塑性并降低了中枢神经系统的抑制作用。介导电流对生物组织影响的可能机制包括抗炎细胞因子的释放,改善微循环,细胞新陈代谢的刺激,和干细胞功能的修饰。ES和MFS有促进血管生成的潜力,直接轴突向预期目标生长,并增强视神经再生中适当的突触发生。
公众号