关键词: Corneal permeation Fluconazole Nanosuspensions Solvent evaporation Stabilizers

来  源:   DOI:10.1016/j.jsps.2024.102104   PDF(Pubmed)

Abstract:
The aim in this study was to develop and evaluate a nanofluconazole (FLZ) formulation with increased solubility and permeation rate using nanosuspensions. The FLZ nanosuspensions were stabilized using a variety of stabilizing agents and surfactants in various concentrations. The FLZ nanosuspension was characterized in vitro using particle size, zeta potential, X-ray powder diffraction (XRPD), and solubility. In addition, the ex vivo ocular permeation of FLZ through a goat cornea was analyzed. The results showed that the particle size of all nanosuspension formulations was in the nanometer range from 174.5 ± 1.9 to 720.2 ± 4.77 nm; that of the untreated drug was 18.34 μm. The zeta potential values were acceptable, which indicated suitable stability for formulations. The solubility of the nanosuspensions was up to 5.7-fold higher compared with that of the untreated drug. The results of the ex vivo ocular diffusion of the FLZ nanosuspensions showed the percentage of FLZ penetrating via the goat cornea increased after using Kollicoat to stabilize the nanosuspension formulation. Consequently, when using a nanosuspension formulation of Kollicoat, the antifungal activity of the drug strengthens.
摘要:
本研究的目的是使用纳米悬浮液开发和评估具有增加的溶解度和渗透速率的纳米氟康唑(FLZ)制剂。使用各种浓度的各种稳定剂和表面活性剂稳定FLZ纳米悬浮液。使用粒径对FLZ纳米混悬液进行了体外表征,zeta电位,X-射线粉末衍射(XRPD),和溶解度。此外,分析了FLZ通过山羊角膜的离体眼部渗透。结果显示,所有纳米混悬剂制剂的粒径在174.5±1.9至720.2±4.77nm的纳米范围内;未处理药物的粒径为18.34μm。zeta电位值是可以接受的,这表明制剂的合适稳定性。与未处理的药物相比,纳米悬浮液的溶解度高达5.7倍。FLZ纳米悬浮液的离体眼部扩散的结果显示,在使用Kollicoat稳定纳米悬浮液制剂之后,经由山羊角膜渗透的FLZ的百分比增加。因此,当使用Kollicoat的纳米混悬剂时,该药物的抗真菌活性增强。
公众号