关键词: azopolymers blisters cell morphology dynamic interfaces surface treatments

Mesh : Azo Compounds / chemistry pharmacology Surface Properties Cell Culture Techniques / methods instrumentation Humans Light Silanes / chemistry Glass / chemistry

来  源:   DOI:10.1021/acsami.4c04186

Abstract:
Azopolymers are light-responsive materials that hold promise to transform in vitro cell culture systems. Through precise light illumination, they facilitate substrate pattern formation and erasure, allowing for the dynamic control and creation of active interfaces between cells and materials. However, these materials exhibit a tendency to locally detach from the supporting glass in the presence of aqueous solutions, such as cell culture media, due to the formation of blisters, which are liquid-filled cavities generated at the azopolymer film-glass interface. These blisters impede precise structurization of the surface of the azomaterial, limiting their usage for surface photoactivation in the presence of cells. In this study, we present a cost-effective and easily implementable method to improve the azopolymer-glass interface stability through silane functionalization of the glass substrate. This method proved to be efficient in preventing blister formation, thereby enabling the dynamic modulation of the azopolymer surface in situ for live-cell experiments. Furthermore, we proved that the light-illumination conditions used to induce azopolymer surface variations do not induce phototoxic effects. Consequently, this approach facilitates the development of a photoswitchable azopolymer cell culture platform for studying the impact of multiple in situ inscription and erasure cycles on cell functions while maintaining a physiological wet microenvironment.
摘要:
偶氮聚合物是光响应材料,有望转化体外细胞培养系统。通过精确的光照,它们有助于基板图案的形成和擦除,允许动态控制和创建细胞和材料之间的活动接口。然而,这些材料表现出在水溶液的存在下从支撑玻璃局部分离的趋势,如细胞培养基,由于水泡的形成,它们是在偶氮聚合物膜-玻璃界面处产生的充满液体的空腔。这些水泡阻碍了偶氮材料表面的精确结构化,限制它们在细胞存在下用于表面光活化。在这项研究中,我们提出了一种经济有效且易于实施的方法,通过玻璃基板的硅烷功能化来改善偶氮聚合物-玻璃界面的稳定性。这种方法被证明是有效的防止水泡形成,从而能够原位动态调节偶氮聚合物表面以进行活细胞实验。此外,我们证明了用于诱导偶氮聚合物表面变化的光照条件不会诱导光毒性效应。因此,这种方法促进了光可转换偶氮聚合物细胞培养平台的开发,用于研究多个原位刻录和擦除周期对细胞功能的影响,同时保持生理湿润的微环境。
公众号