关键词: FZY IAA SAUR SlPP2C floral organ leaf morphology tomato trichome

来  源:   DOI:10.1111/tpj.16818

Abstract:
Abscisic acid (ABA) signaling interacts frequently with auxin signaling when it regulates plant development, affecting multiple physiological processes; however, to the best of our knowledge, their interaction during tomato development has not yet been reported. Here, we found that type 2C protein phosphatase (SlPP2C2) interacts with both flavin monooxygenase FZY, an indole-3-acetic acid (IAA) biosynthetic enzyme, and small auxin upregulated RNA (SAUR) of an IAA signaling protein and regulates their activity, thereby affecting the expression of IAA-responsive genes. The expression level of SlPP2C2 was increased by exogenous ABA, IAA, NaCl, or dehydration treatment of fruits, leaves, and seeds, and it decreased in imbibed seeds. Manipulating SlPP2C2 with overexpression, RNA interference, and CRISPR/Cas9-mediated genome editing resulted in pleiotropic changes, such as morphological changes in leaves, stem trichomes, floral organs and fruits, accompanied by alterations in IAA and ABA levels. Furthermore, the RNA-seq analysis indicated that SlPP2C2 regulates the expression of auxin-/IAA-responsive genes in different tissues of tomato. The results demonstrate that SlPP2C2-mediated ABA signaling regulates the development of both vegetative and reproductive organs via interaction with FZY/SAUR, which integrates the cross-talk of ABA and auxin signals during development and affects the expressions of development-related genes in tomato.
摘要:
脱落酸(ABA)信号在调节植物发育时经常与生长素信号相互作用,影响多个生理过程;然而,据我们所知,它们在番茄发育过程中的相互作用尚未报道。这里,我们发现2C型蛋白磷酸酶(SlPP2C2)与黄素单加氧酶FZY,吲哚-3-乙酸(IAA)生物合成酶,和小生长素上调IAA信号蛋白的RNA(SAUR)并调节其活性,从而影响IAA应答基因的表达。外源ABA增加SlPP2C2的表达水平,IAA,NaCl,或水果的脱水处理,叶子,和种子,在吸入的种子中它减少了。操纵SlPP2C2过表达,RNA干扰,CRISPR/Cas9介导的基因组编辑导致多效性变化,比如叶子的形态变化,茎毛状体,花卉器官和水果,伴随着IAA和ABA水平的改变。此外,RNA-seq分析表明,SlPP2C2调节番茄不同组织中生长素/IAA应答基因的表达。结果表明,SlPP2C2介导的ABA信号通过与FZY/SAUR相互作用调节营养器官和生殖器官的发育,它整合了发育过程中ABA和生长素信号的串扰,并影响番茄发育相关基因的表达。
公众号