关键词: electrospinning gas sensors nanomaterials nanostructure semiconductor metal oxide

来  源:   DOI:10.3390/s24102962   PDF(Pubmed)

Abstract:
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. These include high porosity, large specific surface areas, adjustable morphologies and compositions, and diverse structural designs, improving gas-sensing performance. This review explores the application of variously structured and composed SMOs prepared by electrospinning in gas sensors. It highlights strategies to augment gas-sensing performance, such as noble metal modification and doping with transition metals, rare earth elements, and metal cations, all contributing to heightened sensitivity and selectivity. We also look at the fabrication of composite SMOs with polymers or carbon nanofibers, which addresses the challenge of high operating temperatures. Furthermore, this review discusses the advantages of hierarchical and core-shell structures. The use of spinel and perovskite structures is also explored for their unique chemical compositions and crystal structure. These structures are useful for high sensitivity and selectivity towards specific gases. These methodologies emphasize the critical role of innovative material integration and structural design in achieving high-performance gas sensors, pointing toward future research directions in this rapidly evolving field.
摘要:
静电纺丝彻底改变了半导体金属氧化物(SMO)气体传感器领域,这是气体检测的关键。SMO以其高灵敏度而闻名,快速反应,和特殊的选择性对各种类型的气体。当通过静电纺丝合成时,他们获得了无与伦比的优势。这些包括高孔隙率,大的比表面积,可调节的形态和组成,和多样化的结构设计,提高气体传感性能。本文探讨了通过静电纺丝制备的各种结构和组成的SMO在气体传感器中的应用。它强调了增强气体传感性能的策略,如贵金属改性和过渡金属掺杂,稀土元素,和金属阳离子,所有这些都有助于提高灵敏度和选择性。我们还研究了用聚合物或碳纳米纤维制造复合SMO,解决了高工作温度的挑战。此外,这篇综述讨论了分层结构和核壳结构的优点。尖晶石和钙钛矿结构的使用也因其独特的化学组成和晶体结构而被探索。这些结构可用于对特定气体的高灵敏度和选择性。这些方法强调了创新材料集成和结构设计在实现高性能气体传感器方面的关键作用,指出了这个快速发展的领域未来的研究方向。
公众号