关键词: E. coli MIC S. aureus antimicrobial resistance bacterial pathogens biofilm nanoparticles

来  源:   DOI:10.3390/biomedicines12050994   PDF(Pubmed)

Abstract:
Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents. Herein, we present selenium and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using various techniques and evaluated for their antibacterial potential via disc diffusion, determination of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S. aureus and E. coli were determined to be 125 μg/mL and 100 μg/mL, respectively. Time-kill kinetics studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and 3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial activity against S. aureus and E. coli pathogens.
摘要:
抗菌素耐药性(AMR),由微生物感染引起,已成为全球病态死亡率的主要原因,并对公共卫生构成严重威胁。包括金黄色葡萄球菌在内的耐药病原体菌株的指数增长(S.金黄色葡萄球菌)和大肠杆菌(E.大肠杆菌)由于对传统治疗和药物的更大抵抗力,在卫生部门构成了重大障碍。解决由抗性微生物引起的传染病的努力促进了新型抗菌剂的开发。在这里,我们介绍了硒和氧化铜单金属纳米颗粒(Se-MMNP和CuO-MMNP),使用各种技术进行表征,并通过圆盘扩散评估其抗菌潜力,最低抑菌浓度(MIC)的测定,抗生物膜,和杀戮动力学行动。动态光散射(DLS),扫描电子显微镜(SEM/EDX),和X射线衍射(XRD)技术证实了尺寸分布,球形,稳定性,元素组成,和合成纳米粒子的结构方面。Se-MMNPs和CuO-MMNPs对金黄色葡萄球菌和大肠杆菌的MIC值分别为125μg/mL和100μg/mL。分别。时间-杀死动力学研究表明,CuO-MMNP在3和3.5h内有效地减轻金黄色葡萄球菌和大肠杆菌的生长,而Se-MMNP需要4和5h,分别。此外,与Se-MMNP相比,CuO-MMNP表现出更好的抑制。总的来说,所提出的材料对金黄色葡萄球菌和大肠杆菌病原体表现出有希望的抗菌活性。
公众号