关键词: crosslinked polymers fracturing fluids gels hyperbranched polymers macromolecules natural polymers shear thinning synthetic polymers viscosity

来  源:   DOI:10.3390/gels10050338   PDF(Pubmed)

Abstract:
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications.
摘要:
水力压裂对于从油气藏中开采碳氢化合物至关重要。它涉及在高压下将流体注入储层岩石中。压裂流体的重要部分是添加在储层条件下变成凝胶或凝胶状的聚合物。聚合物用作增粘剂和减摩剂,以在压裂流体中提供支撑剂作为输送介质。存在许多用于基于大分子的压裂液的系统。使用天然和人造线性聚合物,而且,在较小程度上,合成超支化聚合物,在过去的一到二十年中,作为压裂液中的添加剂在各种具有挑战性的储层条件下增强压裂液的稳定性方面显示出巨大的希望。现代创新证明了开发化学结构和性能以提高性能的重要性。关键挑战包括在储层条件下保持粘度和实现合适的剪切稀化行为。大分子的物理结构和新的交联过程对于解决这些问题至关重要。大分子相互作用对储层条件的影响对于有效的流体质量和成功的压裂操作非常关键。在未来,正在进行的研究可能会产生专门的高分子解决方案,以提高石油和天然气应用的效率和可持续性。
公众号