关键词: Alpine ecosystem Extracellular enzyme activities Extracellular enzyme stoichiometry Microbes Vegetation restoration

Mesh : Soil Microbiology Soil / chemistry Grassland Phosphorus / analysis Microbiota Carbon / metabolism

来  源:   DOI:10.1016/j.jenvman.2024.121129

Abstract:
Aboveground vegetation restoration shapes the soil microbial community structure and affects microbial resource acquisition. However, the changes in soil microbial resource limitation in subsoil during vegetation restoration are still unclear. In this study, the microbial community structure and resource limitation in an alpine meadow soil profile that had undergone natural restoration for short-term (4-year) and long-term (10-year) restoration in response to vegetation restoration were explored through high-throughput sequencing analysis and extracellular enzyme stoichiometry (EES). There was no significant difference in microbial composition and α diversity between short- and long-term restoration soils. Soil microorganisms in this alpine meadow were mainly limited by phosphorus. Carbon limitation of soil microorganisms was significantly decreased in each layer (0-15, 15-30, 30-45, 45-60, and 60-80 cm corresponding to L1, L2, L3, L4, and L5, respectively) of long-term restoration soils when compared to that of the short-term restoration soil layers, while phosphorus limitation of microorganisms in subsoil (60-80 cm) was significantly increased by 17.38%. Soil nutrients, pH, moisture content, and microbial composition are the main drivers of microbial resource limitation in restoration, and their effects on microbial resource limitation were different in short- and long-term restoration. Meanwhile, key microbial taxa have a significant impact on microbial resource limitation, especially in short-term restoration soils. This study suggested that vegetation restoration significantly affected soil microbial resource limitation, and could alleviate microbial resource limitations by adding nutrients, thus accelerating the process of vegetation restoration in alpine ecosystems.
摘要:
地上植被恢复影响土壤微生物群落结构,影响微生物资源获取。然而,植被恢复过程中土壤微生物资源限制的变化尚不清楚。在这项研究中,通过高通量测序分析和胞外酶化学计量学(EES),探索了经过短期(4年)和长期(10年)自然恢复以响应植被恢复的高寒草甸土壤剖面中的微生物群落结构和资源限制。短期和长期恢复土壤之间的微生物组成和α多样性没有显着差异。该高寒草甸的土壤微生物主要受磷限制。土壤微生物的碳限制在每层(分别对应于L1,L2,L3,L4和L5的0-15、15-30、30-45、45-60和60-80cm)中都显着降低。与短期恢复土壤层相比,长期恢复土壤,而底土(60-80cm)中微生物的磷限制显着增加了17.38%。土壤养分,pH值,水分含量,微生物组成是修复中微生物资源受限的主要驱动因素,在短期和长期恢复中,它们对微生物资源限制的影响不同。同时,关键的微生物类群对微生物资源限制有重大影响,特别是在短期恢复土壤中。本研究认为植被恢复显著影响土壤微生物资源的限制,可以通过添加营养来缓解微生物资源的限制,从而加快了高寒生态系统植被恢复的进程。
公众号