关键词: Atomic force microscopy (AFM) Circular dichroism (CD) spectroscopy Fluorescence spectroscopy Fourier-transform infrared spectroscopy (FTIR) spectroscopy NMR spectroscopy Small angle x-ray scattering (SAXS)

来  源:   DOI:10.1016/j.crstbi.2024.100138   PDF(Pubmed)

Abstract:
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
摘要:
真核蛋白质通常具有长的氨基酸片段,缺乏明确的三维结构,被称为内在无序蛋白质(IDP)或区域(IDR)。尽管这些蛋白质挑战传统的结构功能范例,它们在细胞过程中起着至关重要的作用。实验技术的最新进展,如核磁共振波谱,单分子FRET,高速AFM和SAXS,为IDP功能的生物物理基础提供了有价值的见解。这篇综述讨论了这些技术的进展,特别是在研究蛋白质中的无序区域方面。在NMR光谱学中,新的策略如13C检测,非均匀采样,分段同位素标记,和快速数据采集方法解决了光谱过度拥挤和国内流离失所者稳定性低带来的挑战。各种核磁共振参数的重要性,包括化学位移,氢交换率,和松弛测量,揭示IDR和IDP内的瞬时二级结构。鉴于国内流离失所者的高度灵活性,该综述概述了在快速(ps-ns)和慢速(μs-ms)时间尺度上评估其动力学的NMR方法。IDPs通过与蛋白质等其他分子的相互作用发挥其功能,DNA,或RNA。基于NMR的滴定实验可深入了解这些相互作用的热力学和动力学。对国内流离失所者的详细研究需要多种实验技术,因此,描述了几种研究无序蛋白质的方法,突出各自的优点和局限性。整合这些互补技术的潜力,每个人都提供独特的视角,旨在全面了解国内流离失所者。
公众号