关键词: Biomedical applications Implantable biomaterials Intermetallic alloys Manufacturing techniques Post-treatment

Mesh : Alloys / chemistry Biocompatible Materials / chemistry Humans Prostheses and Implants Materials Testing Corrosion Surface Properties

来  源:   DOI:10.1016/j.bioadv.2024.213854

Abstract:
This review delves into the utilization of intermetallic alloys (IMAs) as advanced biomaterials for medical implants, scrutinizing their conceptual framework, fabrication challenges, and diverse manufacturing techniques such as casting, powder metallurgy, and additive manufacturing. Manufacturing techniques such as casting, powder metallurgy, additive manufacturing, and injection molding are discussed, with specific emphasis on achieving optimal grain sizes, surface roughness, and mechanical properties. Post-treatment methods aimed at refining surface quality, dimensional precision, and mechanical properties of IMAs are explored, including the use of heat treatments to enhance biocompatibility and corrosion resistance. The review presents an in-depth examination of IMAs-based implantable biomaterials, covering lab-scale developments and commercial-scale implants. Specific IMAs such as Nickel Titanium, Titanium Aluminides, Iron Aluminides, Magnesium-based IMAs, Zirconium-based IMAs, and High-entropy alloys (HEAs) are highlighted, with detailed discussions on their mechanical properties, including strength, elastic modulus, and corrosion resistance. Future directions are outlined, with an emphasis on the anticipated growth in the orthopedic devices market and the role of IMAs in meeting this demand. The potential of porous IMAs in orthopedics is explored, with emphasis on achieving optimal pore sizes and distributions for enhanced osseointegration. The review concludes by highlighting the ongoing need for research and development efforts in IMAs technologies, including advancements in design and fabrication techniques.
摘要:
这篇评论深入研究了金属间化合物合金(IMAs)作为医疗植入物的先进生物材料的应用,仔细检查他们的概念框架,制造挑战,和不同的制造技术,如铸造,粉末冶金,和增材制造。制造技术,如铸造,粉末冶金,增材制造,并讨论了注塑成型,特别强调达到最佳的晶粒尺寸,表面粗糙度,和机械性能。旨在精炼表面质量的后处理方法,尺寸精度,并探讨了IMA的力学性能,包括使用热处理来增强生物相容性和耐腐蚀性。这篇综述对基于IMAs的植入式生物材料进行了深入的研究,涵盖实验室规模的开发和商业规模的植入物。特定的IMA,如镍钛,钛铝化物,铁铝化物,镁基IMA,基于锆的IMA,重点介绍了高熵合金(HEAs),详细讨论了它们的机械性能,包括力量,弹性模量,和耐腐蚀性。概述了未来的方向,强调骨科设备市场的预期增长以及IMA在满足这一需求方面的作用。探索了多孔IMAs在骨科中的潜力,重点是实现最佳的孔径和分布,以增强骨整合。审查最后强调了IMA技术研究和开发工作的持续需求,包括设计和制造技术的进步。
公众号