关键词: CNTs CNTs based woven fabric composite Conventional carbon fibres Mori–Tanaka micromechanics Strength of material method Unit cell method Viscoelastic properties Weak viscoelastic interphase

来  源:   DOI:10.1186/s11671-024-04009-5

Abstract:
Carbon nanotube (CNT) has fostered research as a promising nanomaterial for a variety of applications due to its exceptional mechanical, optical, and electrical characteristics. The present article proposes a novel and comprehensive micromechanical framework to assess the viscoelastic properties of a multiscale CNT-reinforced two-dimensional (2D) woven hybrid composite. It also focuses on demonstrating the utilisation of the proposed micromechanics in the dynamic analysis of shell structure. First, the detailed constructional attributes of the proposed trans-scale composite material system are described in detail. Then, according to the nature of the constructional feature, mathematical modelling of each constituent phase or building block\'s material properties is established to evaluate the homogenised viscoelastic properties of the proposed composite material system. To highlight the novelty of this study, the viscoelastic characteristics of the modified matrix are developed using the micromechanics method of Mori-Tanaka (MT) in combination with the weak viscoelastic interphase (WI) theory. In the entire micromechanical framework, the CNTs are considered to be randomly oriented. The strength of the material (SOM) approach is used to establish mathematical frameworks for the viscoelastic characteristics of yarns, whereas the unit cell method (UCM) is used to determine the viscoelastic properties of the representative unit cell (RUC). Different numerical results have been obtained by varying the CNT composition, interface conditions, agglomeration, carbon fibre volume percentage, excitation frequency, and temperature. The influences of geometrical parameters like yarn thickness, width, and the gap length to yarn width ratio on the viscoelasticity of such composite material systems are also explored. The current study also addresses the issue of resultant anisotropic viscoelastic properties due to the use of dissimilar yarn thickness. The results of this micromechanical analysis provide valuable insights into the viscoelastic properties of the proposed composite material system and suggest its potential applications in vibration damping. To demonstrate the application of developed novel micromechanics in vibration analysis, as one of the main contributions, comprehensive numerical experiments are conducted on a shell panel. The results show a significant reduction in vibration amplitudes compared to traditional composite materials in the frequency response and transient response analyses. To focus on the aspect of micromechanical behaviour on dynamic response and for the purpose of brevity, only linear strain displacement relationships are considered for dynamic analysis. These insights could inform future research and development in the field of composite materials.
摘要:
碳纳米管(CNT)已促进研究作为一种有前途的纳米材料的各种应用,由于其特殊的机械,光学,和电气特性。本文提出了一种新颖且全面的微机械框架,以评估多尺度CNT增强的二维(2D)编织混合复合材料的粘弹性能。它还着重于演示所提出的微观力学在壳结构动态分析中的应用。首先,详细介绍了所提出的跨尺度复合材料系统的详细结构属性。然后,根据结构特征的性质,建立每个组成相或构建块的材料性能的数学模型,以评估所提出的复合材料体系的均匀粘弹性性能。为了强调这项研究的新颖性,使用Mori-Tanaka(MT)的微观力学方法结合弱粘弹性相间(WI)理论,开发了改性基质的粘弹性特性。在整个微机械框架中,CNT被认为是随机取向的。材料强度(SOM)方法用于建立纱线粘弹性特性的数学框架,而晶胞法(UCM)用于确定代表性晶胞(RUC)的粘弹性。通过改变CNT组成获得了不同的数值结果,接口条件,团聚,碳纤维体积百分比,激励频率,和温度。几何参数的影响,如纱线厚度,宽度,并探讨了间隙长纱宽比对复合材料体系粘弹性的影响。当前的研究还解决了由于使用不同的纱线厚度而导致的各向异性粘弹性特性的问题。这种微机械分析的结果为所提出的复合材料系统的粘弹性性能提供了有价值的见解,并提出了其在减振中的潜在应用。为了证明开发的新型微观力学在振动分析中的应用,作为主要贡献之一,在壳面板上进行了全面的数值实验。结果表明,在频率响应和瞬态响应分析中,与传统复合材料相比,振动振幅显着降低。为了专注于动态响应的微机械行为方面,为了简洁起见,仅考虑线性应变位移关系进行动态分析。这些见解可以为复合材料领域的未来研究和开发提供信息。
公众号