Mesh : Polyurethanes / chemistry Spores, Bacterial Biocompatible Materials / chemistry Tensile Strength Hot Temperature Green Fluorescent Proteins / metabolism genetics

来  源:   DOI:10.1038/s41467-024-47132-8   PDF(Pubmed)

Abstract:
The field of hybrid engineered living materials seeks to pair living organisms with synthetic materials to generate biocomposite materials with augmented function since living systems can provide highly-programmable and complex behavior. Engineered living materials have typically been fabricated using techniques in benign aqueous environments, limiting their application. In this work, biocomposite fabrication is demonstrated in which spores from polymer-degrading bacteria are incorporated into a thermoplastic polyurethane using high-temperature melt extrusion. Bacteria are engineered using adaptive laboratory evolution to improve their heat tolerance to ensure nearly complete cell survivability during manufacturing at 135 °C. Furthermore, the overall tensile properties of spore-filled thermoplastic polyurethanes are substantially improved, resulting in a significant improvement in toughness. The biocomposites facilitate disintegration in compost in the absence of a microbe-rich environment. Finally, embedded spores demonstrate a rationally programmed function, expressing green fluorescent protein. This research provides a scalable method to fabricate advanced biocomposite materials in industrially-compatible processes.
摘要:
混合工程活材料领域寻求将活生物体与合成材料配对以产生具有增强功能的生物复合材料,因为生命系统可以提供高度可编程和复杂的行为。工程生活材料通常是在良性水性环境中使用技术制造的,限制其应用。在这项工作中,证明了生物复合材料的制造,其中使用高温熔融挤出将降解聚合物的细菌的孢子掺入热塑性聚氨酯中。使用适应性实验室进化对细菌进行工程改造,以提高其耐热性,以确保在135°C的制造过程中几乎完全的细胞生存能力。此外,孢子填充热塑性聚氨酯的整体拉伸性能得到了显著改善,导致韧性的显著改善。生物复合材料在缺乏富含微生物的环境的情况下促进堆肥中的分解。最后,嵌入式孢子表现出合理的编程功能,表达绿色荧光蛋白。这项研究提供了一种可扩展的方法,可以在工业兼容的过程中制造先进的生物复合材料。
公众号