关键词: Monte Carlo simulation density functional theory electronic structure first-principles calculation interface phenomena magnetic films molecular dynamics simulations substrates

来  源:   DOI:10.3390/ma17061436   PDF(Pubmed)

Abstract:
Magnetic thin-film modeling stands as a dynamic nexus of scientific inquiry and technological advancement, poised at the vanguard of materials science exploration. Leveraging a diverse suite of computational methodologies, including Monte Carlo simulations and molecular dynamics, researchers meticulously dissect the intricate interplay governing magnetism and thin-film growth across heterogeneous substrates. Recent strides, notably in multiscale modeling and machine learning paradigms, have engendered a paradigm shift in predictive capabilities, facilitating a nuanced understanding of thin-film dynamics spanning disparate spatiotemporal regimes. This interdisciplinary synergy, complemented by avantgarde experimental modalities such as in situ microscopy, promises a tapestry of transformative advancements in magnetic materials with far-reaching implications across multifaceted domains including magnetic data storage, spintronics, and magnetic sensing technologies. The confluence of computational modeling and experimental validation heralds a new era of scientific rigor, affording unparalleled insights into the real-time dynamics of magnetic films and bolstering the fidelity of predictive models. As researchers chart an ambitiously uncharted trajectory, the burgeoning realm of magnetic thin-film modeling burgeons with promise, poised to unlock novel paradigms in materials science and engineering. Through this intricate nexus of theoretical elucidation and empirical validation, magnetic thin-film modeling heralds a future replete with innovation, catalyzing a renaissance in technological possibilities across diverse industrial landscapes.
摘要:
磁性薄膜建模是科学研究和技术进步的动态纽带,站在材料科学探索的先锋。利用一套不同的计算方法,包括蒙特卡罗模拟和分子动力学,研究人员精心解剖了复杂的相互作用,控制着异质衬底上的磁性和薄膜生长。最近的进展,特别是在多尺度建模和机器学习范式中,导致了预测能力的范式转变,促进对跨越不同时空体制的薄膜动力学的细致入微的理解。这种跨学科的协同作用,辅以前卫的实验方式,如原位显微镜,承诺了磁性材料的变革性进步的挂毯,对包括磁数据存储在内的多方面领域具有深远的影响,自旋电子学,和磁传感技术。计算建模和实验验证的融合预示着科学严谨的新时代,提供了对磁膜实时动态的无与伦比的见解,并增强了预测模型的保真度。当研究人员绘制一条雄心勃勃的未知轨迹时,有希望的磁性薄膜建模新兴领域,准备解锁材料科学和工程的新范式。通过这种错综复杂的理论阐释和经验验证,磁性薄膜建模预示着充满创新的未来,在各种工业景观中催化技术可能性的复兴。
公众号