关键词: Antibacterial activity Bacterial pathogens Bimetallic/small antimicrobial peptide nanoparticles

Mesh : Nanotubes, Carbon / chemistry Silver / pharmacology chemistry Metal Nanoparticles / chemistry Anti-Bacterial Agents / pharmacology chemistry Nanocomposites / chemistry Bacteria Pesticides

来  源:   DOI:10.1016/j.ijbiomac.2024.131042

Abstract:
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
摘要:
全球作物产量受到持续致病细菌的威胁,这些细菌会造成重大损害并危及全球粮食安全。化学农药在保护作物免受严重产量损失方面显示出有限的效果。为了解决这个障碍,越来越需要开发具有广谱和持续保护作用的环保杀菌剂,以抵抗持久性作物病原体。这里,我们提出了一种制备纳米复合材料的方法,该复合材料结合了抗菌肽(AMP)和锚定在多壁碳纳米管(MWCNT)上的双金属Cu-Ag纳米颗粒。纳米复合材料通过破坏细菌细胞膜和剪接核酸而表现出双重抗菌活性。通过用小AMP(sAMP)官能化MWCNT,我们提高了纳米复合材料的稳定性和渗透性,提高了Cu-Ag纳米粒子的负载能力。合成的MWCNT和CuNCs@AgNPs@P纳米复合材料证明了对革兰氏阳性和革兰氏阴性细菌病原体的广谱致死性。温室盆栽试验证实了纳米复合材料在保护水稻作物免受细菌性叶枯病和番茄作物免受细菌性枯萎病方面的功效。这些发现突出了MWCNTs和CuNCs@AgNPs@P纳米复合材料的优异抗菌性能及其替代化学农药的潜力,为农业应用提供了显著的优势。
公众号