关键词: HIV-1 Pol structure computational structural biology domain assembly homology modeling immature protein structure modeling loop modeling

Mesh : Humans Gene Products, pol / genetics metabolism HIV Infections / drug therapy HIV Protease / genetics metabolism HIV-1 / genetics metabolism Polyproteins / genetics RNA-Directed DNA Polymerase / metabolism pol Gene Products, Human Immunodeficiency Virus / chemistry

来  源:   DOI:10.3390/ijms25031809   PDF(Pubmed)

Abstract:
Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV). HIV protease, reverse transcriptase, and integrase are targets of current drugs to treat the disease. However, anti-viral drug-resistant strains have emerged quickly due to the high mutation rate of the virus, leading to the demand for the development of new drugs. One attractive target is Gag-Pol polyprotein, which plays a key role in the life cycle of HIV. Recently, we found that a combination of M50I and V151I mutations in HIV-1 integrase can suppress virus release and inhibit the initiation of Gag-Pol autoprocessing and maturation without interfering with the dimerization of Gag-Pol. Additional mutations in integrase or RNase H domain in reverse transcriptase can compensate for the defect. However, the molecular mechanism is unknown. There is no tertiary structure of the full-length HIV-1 Pol protein available for further study. Therefore, we developed a workflow to predict the tertiary structure of HIV-1 NL4.3 Pol polyprotein. The modeled structure has comparable quality compared with the recently published partial HIV-1 Pol structure (PDB ID: 7SJX). Our HIV-1 NL4.3 Pol dimer model is the first full-length Pol tertiary structure. It can provide a structural platform for studying the autoprocessing mechanism of HIV-1 Pol and for developing new potent drugs. Moreover, the workflow can be used to predict other large protein structures that cannot be resolved via conventional experimental methods.
摘要:
获得性免疫缺陷综合症(AIDS)是由人类免疫缺陷病毒(HIV)引起的。HIV蛋白酶,逆转录酶,整合酶是目前治疗这种疾病的药物的靶点。然而,由于病毒的高突变率,抗病毒耐药株迅速出现,导致对新药开发的需求。一个有吸引力的靶标是Gag-Pol多蛋白,在艾滋病毒的生命周期中起着关键作用。最近,我们发现HIV-1整合酶中M50I和V151I突变的组合可以抑制病毒释放,抑制Gag-Pol自加工和成熟的启动,而不干扰Gag-Pol的二聚化.逆转录酶中整合酶或RNaseH结构域的其他突变可以弥补该缺陷。然而,分子机制未知。没有可用于进一步研究的全长HIV-1Pol蛋白的三级结构。因此,我们开发了一个工作流程来预测HIV-1NL4.3Pol多蛋白的三级结构.与最近公布的部分HIV-1Pol结构(PDBID:7SJX)相比,模型结构具有相当的质量。我们的HIV-1NL4.3Pol二聚体模型是第一个全长Pol三级结构。它可以为研究HIV-1Pol的自动处理机制和开发新的有效药物提供结构平台。此外,该工作流程可用于预测无法通过常规实验方法解析的其他大型蛋白质结构。
公众号