关键词: energy conversion analysis flexible actuators hygroscopic adaptability industrialized production smart wearables

Mesh : Humans Male Computer Simulation Humidity Hypertelorism Hypospadias Wearable Electronic Devices

来  源:   DOI:10.1021/acsami.3c16532

Abstract:
Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
摘要:
柔性致动器在生物医学设备领域引起了极大的兴趣,人机界面,和智能可穿戴设备。然而,现有材料的机械性能不够坚固,价格昂贵,耗时长,高自由度变形机理模糊,难以满足工业化生产的需求。因此,从自然界中生物体的适应性运动中汲取灵感,这项研究创建并设计了一个完全基于纺织品的湿度敏感柔性致动器(TbHs-FA),使用高性价比的粘胶/PET纤维作为原料。涵盖了致动性能的突破性发展,包括大量收缩力(92.53cN),高驱动曲率(16.78cm-1),和快速响应(264cNs-1和46.61cm-1s-1)。此外,可编程刚度系统和编织结构使TbHs-FAs具有低滞后和抗疲劳性,缩小现有的完全基于纺织品的湿度敏感柔性执行器和实际纺织品的概念性实验室规模设计之间的差距。结合微观机械结构模拟和宏观能量转换分析,首次阐明了高自由度和大弯曲变形机理。新型湿度敏感柔性执行器具有强大的机械特性,使其适用于柔性机器人等应用,医疗设备,和智能可穿戴设备。
公众号