关键词: biological-camouflage cellular hitchhiking opsonization stealth surface-modification

Mesh : Humans Polyethylene Glycols / chemistry Opsonization Artificial Intelligence Drug Delivery Systems Opsonin Proteins / chemistry metabolism Nanoparticles / chemistry

来  源:   DOI:10.1002/cbf.3880

Abstract:
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
摘要:
由于巨噬细胞介导的纳米颗粒破坏,调理作用在阻碍纳米制剂的受控药物释放中起关键作用。虽然第一代和第二代输送系统,例如脂质体复合物(50-150nm)和量子点,在通过时空控制的药物递送彻底改变疾病治疗方面具有巨大的潜力,它们的治疗功效受到网状内皮系统和单核吞噬细胞系统通过各种分子力摄取的纳米颗粒的选择性标记的限制,如静电,疏水,和范德华债券。这篇综述文章提出了利用大分子介导的方法对表面修饰技术的新见解,包括聚乙二醇化,双嵌段共聚,和多嵌段聚合。这些技术通过产生空间力来排斥微分子调理素,从而诱导隐形特性,如纤维蛋白原,从而减轻调理作用。此外,先进的生物方法,比如细胞搭便车和调差蛋白吸附,强调了它们通过吸附到纳米颗粒表面来诱导生物伪装的潜力,导致免疫逃逸。这些重要发现为开发能够为患者提供优质治疗的长循环下一代纳米平台铺平了道路。未来整合基于人工智能的算法,与纳米粒子的特性,如形状,尺寸,和表面化学,可以帮助阐明纳米颗粒表面形态和预测与免疫系统的相互作用,为调理的可能路径提供有价值的见解。
公众号