关键词: Dynamic carpal stability Lunotriquetral joint muscle control Scapholunate joint muscle control Wrist kinematics Wrist kinetics Wrist proprioception

Mesh : Humans Proprioception / physiology Joint Instability / physiopathology Wrist Joint / physiology Ligaments, Articular / physiology Biomechanical Phenomena Carpal Joints / physiology Muscle, Skeletal / physiology

来  源:   DOI:10.1016/j.jht.2023.09.011

Abstract:
BACKGROUND: Recent research interest has grown in exploring the role of muscles, isometric contraction, proprioception, and neuromuscular control in addressing dynamic scapholunate and lunotriquetral joint instability, marking a shift in the understanding of wrist stability.
OBJECTIVE: To present a comprehensive review of the carpal ligaments anatomy and wrist biomechanics, with a particular focus on the role of proprioception in dynamic carpal stability and their role in managing scapholunate (SL) and lunotriquetral (LTq) dynamic instabilities.
METHODS: We conducted a systematic search of the literature and review of the most relevant papers published and indexed in pubmed, related to wrist biomechanics, proprioception and its contribution to carpal dynamic stability.
METHODS: The study involved a comprehensive review of neuromuscular mechanisms in dynamic stabilization of the carpus, based on cadaver studies. The 3D position of the scaphoid, triquetrum, and capitate was monitored before and after tendon loading.
RESULTS: The extensor carpi ulnaris (ECU) and the flexor carpi radialis (FCR) are identified as the primary pronators of the midcarpal joint. The ECU\'s pronation effect can potentially strain the scapholunate ligament, while the supinator muscles, the abductor pollicis longus (APL), the extensor carpi radialis longus (ECRL), and the flexor carpi ulnaris (FCU), have a protective role, particularly in cases of scapholunate ligament dysfunctions. The FCR, despite being a pronator of the distal row, has a beneficial effect as it provokes supination of the scaphoid.
CONCLUSIONS: Comprehending carpal dysfunctions and instabilities hinges on understanding carpal anatomy and normal biomechanics. Proprioception, encompassing joint position sensation and neuromuscular control, is pivotal for stability. Biomechanical research informs tailored muscle strengthening for specific carpal issues. Supinator muscles should be strengthened for SL injuries, and ECU-focused strengthening and proprioceptive training are key for dynamic LTq instabilities. Ongoing research should delve into the intricate relationship between carpal ligaments, muscles, and proprioception to enhance wrist stability.
摘要:
背景:最近的研究兴趣在探索肌肉的作用,等距收缩,本体感受,和神经肌肉控制,以解决动态的肩胛骨和腔三支关节不稳定,标志着手腕稳定性理解的转变。
目的:对腕骨韧带解剖和腕关节生物力学进行全面综述,特别关注本体感觉在动态腕骨稳定性中的作用以及它们在管理肩胛骨(SL)和lunotriquetral(LTq)动态不稳定性中的作用。
方法:我们对文献进行了系统的搜索,并对pubmed,与手腕生物力学有关,本体感觉及其对腕骨动态稳定性的贡献。
方法:该研究涉及对腕骨动态稳定中的神经肌肉机制的全面回顾,基于尸体研究。舟骨的3D位置,三角,在肌腱加载之前和之后监测头状。
结果:尺侧腕伸肌(ECU)和桡侧腕屈肌(FCR)被确定为中腕关节的主要旋前体。ECU的内旋效应可能会使肩胛骨韧带紧张,而旋后肌肌肉,长骨绑架者(APL),桡骨腕长伸肌(ECRL),和尺侧腕屈肌(FCU),有保护作用,特别是在肩胛骨韧带功能障碍的情况下。FCR,尽管是远端行的旋前者,具有有益的效果,因为它引起了舟骨的旋后。
结论:了解腕关节功能障碍和不稳定性取决于了解腕关节解剖结构和正常生物力学。本体感受,包括关节位置感觉和神经肌肉控制,是稳定的关键。生物力学研究为特定的腕骨问题提供量身定制的肌肉强化。对于SL损伤,应加强旋肌,以ECU为中心的强化和本体感受训练是动态LTq不稳定性的关键。正在进行的研究应该深入研究腕骨韧带之间的复杂关系,肌肉,和本体感受,以增强手腕的稳定性。
公众号