关键词: alkali-activated ball mill grinding ground granulated blast furnace slag isothermal calorimetry mortar wood ash wood fly ash

来  源:   DOI:10.3390/ma16155347   PDF(Pubmed)

Abstract:
Cement production contributes significantly to carbon dioxide emissions. Alkali-activated materials offer an environmentally friendly alternative due to their comparable strength, durability and low-carbon emissions while utilizing wastes and industrial by-products. Wood ash is a waste material that shows promising results as a partial replacement for Portland cement and precursors in alkali-activated systems. The aim of this study was to examine the effect of ground wood ash on the mechanical properties of alkali-activated mortars. Wood ash was incorporated as a 0 wt%, 10 wt% and 20 wt% partial replacement for ground granulated blast furnace slag (GGBFS). The wood ashes were ground in a planetary ball mill for 10 and 20 min. Sodium silicate (Na2SiO3), sodium carbonate (Na2CO3), and sodium hydroxide (NaOH) were used as alkali activators. The results demonstrated that ground wood ash improved the mechanical properties of alkali-activated systems compared to untreated wood ash. However, the incorporation of wood ash increased the porosity of the binder matrix.
摘要:
水泥生产对二氧化碳排放有很大贡献。碱活化材料由于其相当的强度,提供了一种环保的替代品,耐久性和低碳排放,同时利用废物和工业副产品。木灰是一种废料,作为碱活化体系中波特兰水泥和前体的部分替代品,显示出有希望的结果。这项研究的目的是研究磨碎的木灰对碱活化砂浆机械性能的影响。木灰以0重量%掺入,10重量%和20重量%部分替代磨碎的粒状高炉矿渣(GGBFS)。将木灰在行星式球磨机中研磨10分钟和20分钟。硅酸钠(Na2SiO3),碳酸钠(Na2CO3),和氢氧化钠(NaOH)用作碱活化剂。结果表明,与未处理的木灰相比,磨碎的木灰改善了碱活化体系的机械性能。然而,木灰的掺入增加了粘合剂基质的孔隙率。
公众号