关键词: CPSF SCC SHPB mechanical properties

来  源:   DOI:10.3390/ma16114025   PDF(Pubmed)

Abstract:
The mechanical properties and impact resistance of conventional self-compacting concrete (SCC) need to be further improved. In order to explore the dynamic and static mechanical properties of copper-plated steel-fiber-reinforced self-compacting concrete (CPSFRSCC), the static mechanical properties and dynamic mechanical properties of CPSFRSCC with a different volume fraction of copper-plated steel fiber (CPSF) are tested, and a numerical experiment is carried out to analyze the experimental results. The results show that the mechanical properties of self-compacting concrete (SCC) can be effectively improved by adding CPSF, especially for the tensile mechanical properties. The static tensile strength of CPSFRSCC shows a trend that increases with the increase in the volume fraction of CPSF and then reaches the maximum when the volume fraction of CPSF is 3%. The dynamic tensile strength of CPSFRSCC shows a trend that increases first and then decrease with the increase in the volume fraction of CPSF, and then reaches the maximum when the volume fraction of CPSF is 2%. The results of the numerical simulation show that the failure morphology of CPSFRSCC is closely related to the content of CPSF; with the increase in the volume fraction of CPSF, the fracture morphology of the specimen gradually evolves from complete fracture to incomplete fracture.
摘要:
常规自密实混凝土(SCC)的力学性能和抗冲击性能有待进一步提高。为了探究镀铜钢纤维自密实混凝土(CPSFRSCC)的动静态力学性能,测试了不同体积分数镀铜钢纤维(CPSF)的CPSFRSCC的静态力学性能和动态力学性能,并进行了数值实验,对实验结果进行了分析。结果表明,添加CPSF能有效改善自密实混凝土的力学性能,特别是拉伸机械性能。CPSFRSCC的静态拉伸强度呈现随CPSF体积分数的增加而增加的趋势,当CPSF体积分数为3%时达到最大值。随着CPSF体积分数的增加,CPSFRSCC的动态拉伸强度呈现先增大后减小的趋势,当CPSF的体积分数为2%时达到最大值。数值模拟结果表明,CPSFRSCC的失效形态与CPSF的含量密切相关;随着CPSF体积分数的增加,试样的断裂形态由完全断裂逐渐向不完全断裂演变。
公众号