关键词: Electrostatic interaction Halogen bond Halogen oxides Hydrogen bond

来  源:   DOI:10.1007/s00894-022-05415-1

Abstract:
The role of halogen oxides is substantial in the stratosphere, especially for ozone depletion. It is important to make clear the interaction of halogen oxides with other gaseous molecules. This work performed quantum chemical calculations to investigate the intermolecular interactions between XmOn (X = Cl or Br, m, n = 1 or 2) and ammonia. The chlorine and bromine oxides selected in this paper include typical halogen oxides which can influence the atmospheric processes. For each complex, two different types of interactions, halogen and hydrogen bonds were identified. A π-hole interaction was also found in the XO2···NH3 complex. The interaction energy implies that the strength of the halogen bond is far more stronger than the hydrogen bond. A prominent difference exists between the halogen oxides of singlet or doublet state, which can be ascribed to the electron spin density distribution. The nature of the intermolecular interactions was identified by an independent gradient model based on Hirshfeld partition (IGMH) analysis. Symmetry-adapted perturbation theory (SAPT) calculation indicates that electrostatic interaction dominates the halogen-bonded complex, and hydrogen bond is driven by electrostatic interaction and dispersion.
摘要:
卤素氧化物在平流层中的作用很大,特别是臭氧消耗。明确卤素氧化物与其他气体分子的相互作用是重要的。这项工作进行了量子化学计算,以研究XmOn(X=Cl或Br,m,n=1或2)和氨。本文选择的氯和溴氧化物包括典型的卤素氧化物,它们会影响大气过程。对于每一个复杂的,两种不同类型的互动,确定了卤素和氢键。在XO2···NH3络合物中也发现了π-空穴相互作用。相互作用能意味着卤键的强度远远强于氢键。单线态或双线态的卤素氧化物之间存在显著差异,这可以归因于电子自旋密度分布。通过基于Hirshfeld分区(IGMH)分析的独立梯度模型鉴定了分子间相互作用的性质。对称适应的微扰理论(SAPT)计算表明,静电相互作用主导了卤键配合物,氢键是由静电相互作用和分散驱动的。
公众号