关键词: Pinus Conifers cryo-scanning electron microscopy electron microscopy foliar water uptake leaf surface needle age stomata stomatal wax plug surfactants wax crystals wax degradation

Mesh : Biological Transport Surface-Active Agents Microscopy, Electron, Scanning Pinus Water

来  源:   DOI:10.1093/aob/mcac141   PDF(Pubmed)

Abstract:
Foliar water uptake (FWU) has been documented in many species and is increasingly recognized as a non-trivial factor in plant-water relationships. However, it remains unknown whether FWU is a widespread phenomenon in Pinus species, and how it may relate to needle traits such as the form and structure of stomatal wax plugs. In this contribution, these questions were addressed by studying FWU in current-year and 1-year-old needles of seven Pinus species.
We monitored FWU gravimetrically and analysed the needle surface via cryo-scanning electron microscopy. Additionally, we considered the effect of artificial wax erosion by application of the surfactant Triton X-100, which is able to alter wax crystals.
The results show for all species that (1) FWU occurred, (2) FWU is higher in old needles compared to young needles and (3) there is substantial erosion of stomatal wax plugs in old needles. FWU was highest in Pinus canariensis, which has a thin stomatal wax plug. Surfactant treatment enhanced FWU.
The results of this study provide evidence for (1) widespread FWU in Pinus, (2) the influence of stomatal wax plugs on FWU and (3) age-related needle surface erosion.
摘要:
目的:叶面吸水(FWU)已在许多物种中得到证明,并且越来越被认为是植物与水关系中的重要因素。然而,目前尚不清楚FWU是否是松属物种中的广泛现象,以及它如何与针状性状有关,例如气孔蜡塞的形式和结构。在这一贡献中,这些问题是通过研究FWU在7种松树种的本年度和一岁针中解决的。
方法:我们对FWU进行了重量监测,并用低温扫描电子显微镜分析了针头表面。此外,我们考虑了通过应用能够改变蜡晶体的表面活性剂TritonTMX-100对人造蜡侵蚀的影响。
结果:结果显示所有物种均发生1)FWU,2)与年轻针相比,老针的FWU更高,3)旧针中气孔蜡塞有大量侵蚀。FWU在加拿大黄曲霉中最高,显示出薄的气孔蜡塞。表面活性剂处理增强FWU。
结论:这项研究的结果为1)松树中广泛的FWU提供了证据,2)气孔蜡塞对FWU的影响,和3)年龄相关的针表面侵蚀。
公众号