关键词: brain stimulation computational modelling magnetoelectric nanoparticles brain stimulation computational modelling magnetoelectric nanoparticles

Mesh : Brain / physiology Models, Anatomic Nanoparticles Prefrontal Cortex Stereotaxic Techniques Transcranial Magnetic Stimulation / methods

来  源:   DOI:10.1088/1741-2552/ac9085

Abstract:
Objective.Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to enable different biomedical applications. They could be used to overcome the intrinsic constraints posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation.Approach.By using computational electromagnetic techniques, we modelled the behaviour of recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical targets of a highly detailed anatomical head model. The distributions and the tissue penetration of the electric fields induced by MENPs clusters in each tissue will be compared to the distributions induced by traditional transcranial magnetic stimulation (TMS) coils for non-invasive brain stimulation positioned on the left prefrontal cortex (PFC) of a highly detailed anatomical head model.Main results.MENPs clusters can induce highly focused electric fields with amplitude close to the neural activation threshold in all the brain tissues of interest for the treatment of most neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of V m-1over a broad volume of the PFC, but they are unlikely able to efficiently stimulate even small volumes of subcortical and deep tissues.Significance.Our numerical results suggest that the use of MENPs for brain stimulation may potentially led to a future pinpoint treatment of neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and subcortical tissues and networks has been assumed to play a crucial role.
摘要:
Objective.最近开发的磁电纳米粒子(MENP)为实现不同的生物医学应用提供了潜在的工具。它们可以用来克服传统神经刺激技术带来的内在限制,即基于电极的技术的侵入性,有限的空间分辨率,以及磁刺激的稀缺效率。方法。通过使用计算电磁技术,我们模拟了最近设计的生物相容性MENP注射的行为,集群的形状,在高度详细的解剖头部模型的特定皮质目标中。将由每个组织中的MENP簇诱导的电场的分布和组织穿透与由传统的经颅磁刺激(TMS)线圈诱导的分布进行比较,用于定位在高度详细的解剖头部模型的左前额叶皮层(PFC)上的非侵入性脑刺激。主要结果。MENP簇可以在所有感兴趣的脑组织中诱导高度聚焦的电场,其幅度接近神经激活阈值,以治疗大多数神经精神疾病。相反,TMS线圈可以在广泛的PFC上感应出几十Vm-1的电场,但即使是小体积的皮质下和深层组织,它们也不可能有效地刺激。意义。我们的数值结果表明,使用MENP进行脑刺激可能会导致未来对神经性疾病的精确治疗。其中特定皮质和皮质下组织和网络的电活动受损被认为起着至关重要的作用。
公众号