关键词: Biosynthesis of dNTPs cell cycle chloroplast biogenesis ribonucleotide reductase tomato

Mesh : Cell Cycle / genetics Chloroplasts Gene Expression Regulation, Plant Solanum lycopersicum / genetics metabolism Photosynthesis / genetics Ribonucleotide Reductases / genetics metabolism

来  源:   DOI:10.1093/aob/mcac078   PDF(Pubmed)

Abstract:
Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions.
The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system.
The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal.
SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
摘要:
核糖核苷酸还原酶(RNR),在脱氧核糖核苷三磷酸(dNTPs)的从头合成中起作用,对DNA复制和细胞周期进程至关重要。在大多数植物中,RNR的大亚基有一个以上的同源基因。然而,这些同源基因在植物发育中的不同功能仍然未知。在这项研究中,我们获得了番茄RNR的两个大亚基的突变体,并研究了它们的功能。
通过甲基磺酸乙酯(EMS)处理获得突变体ylc1。通过基于地图的克隆,补充和敲除实验,证实YLC1编码RNR的大亚基(SlRNRL1)。细胞周期进程相关基因的表达水平,通过RNA测序评估叶绿体的生物发生和光合作用。此外,我们使用CRISPR-Cas9技术在番茄基因组中敲除SlRNRL2(SlRNRL1同源物),并且我们使用烟草拨浪鼓病毒诱导的基因沉默(VIGS)系统在slrnrl1-1的遗传背景下下调了SlRNRL2的表达。
突变体slrnrl1表现出矮小的身材,褪绿的幼叶和较小的果实。生理和转录组学分析表明,SlRNRL1在细胞周期进程的调节中起着至关重要的作用。番茄叶绿体生物发生和光合作用。slrnrl2突变体没有表现出任何可见的表型。SlRNRL2与SlRNRL1具有冗余功能,双突变体slrnrl1slrnrl2是致命的。
SlRNRL1对于细胞周期进程至关重要,叶绿体生物发生和光合作用。此外,SlRNRL1和SlRNRL2具有冗余功能,并且这些RNRL中的至少一个是番茄存活所必需的,成长和发展。
公众号